Project: OpenSecurity

Architecture

	Document Control Page

	Creator
	AIT

	Editor
	Mihai Bartha

	Subject
	OpenSecurity - Architecture

	Meeting date(s)
	

	Meeting location
	

	Publisher
	OpenSecurity consortium

	Type
	Text

	Format
	Application/msword

	Language
	EN-GB

	Creation date
	2013-01-07

	Rights
	© Copyright “OpenSecurity consortium”.

	Audience
	 FORMCHECKBOX
 internal

	Review status
	 FORMCHECKBOX
 Draft

 FORMCHECKBOX
 Final

	Action requested
	 FORMCHECKBOX
 to be checked by Partners present at the meeting

	Revision history

	Version
	Date
	Modified by
	Comments

	0.1
	2013-04-12
	Mihai Bartha
	Initial version

	0.2
	2013-04-19
	Jürgen Eckel
	Extended Chapter 3.1

	0.3
	2013-04-22
	Mihai Bartha
	Integrated section 3.2

	0.4
	2013-05-27
	Frank Treichl
	Translating and modifications on 2.1.1, 2.1.2 and 6.1.1

	0.5
	2013-07-23
	Mihai Bartha
	Restructured section 3. Addressed comments from WEi. Added section 3.2.2, 3.3, 3.6.2 and 3.4.2. Changed template.

Table of contents

61
Introduction

2
Use Cases
8
2.1
Interaction with Removable Storage Devices
8
2.1.1
Use-case „Export Encrypted Data“
8
2.1.2
Use-case „Import Encrypted Data“
9
2.2
Interaction with Unsafe Network
10
2.2.1
Use-case “Laptop joins Safe Network”
10
2.2.2
Use-case „Safe Internet Access”
11
3
Architecture
12
3.1
Overview
12
3.2
Interaction with Removable Storage Devices
12
3.2.1
Local QubesOS based import/export of encrypted data
13
3.2.2
Local Native OS based import/export of encrypted data
14
3.2.3
Server based import/export of encrypted data
15
3.3
SecurityVM Template Management and Update
16
3.4
Interaction with Unsafe Network
17
3.4.1
Self Scan – Join Local Network
17
3.4.2
Safe Internet Access
18
3.5
Antivirus Tools and Usage Patterns
19
3.6
Cryptographic Algorithms and Services
22
3.6.1
Standard TrueCrypt workflow
22
3.6.2
Integration into the OpenSecurity layer
23
3.6.3
Problems in this solution
24
4
Implementation guidelines
25
5
References
27
6
Annexes
28
6.1
Encryption and Decryption
28
6.2
Initial high lever requirements
29

1 Introduction

This document aims at providing the architecture based on the requirements identified in AP2 and documented in the “Requirements specification” document. One of the main challenges of the OpenSecurity project is enabling the users, currently restricted to a closed and secure local network, to work with external resources.
The two main topics will be addressed within the scope of the OpenSecurity project. In the first year of the project the interaction with Removable Storage Devices (RSD) will be addressed. The second part of the project will address the interaction with external network resources (WWW) and mobile workstations (e.g. Laptops). Security of mobile devices (Smart-Phones, Tablets, etc.) is outside the scope of the project as these devices use a plethora of proprietary software and operating systems and no generic solution can be implemented.

2 Architecture

From the OpenSecurity perspective two main security zones can be identified and will be referred to throughout the present document.

[image: image1.jpg]
Figure 1 - Network Topology

Safe Network (SN) is the corporate network of the demand carrier. The user’s interaction is currently limited to this network because of the sensible nature of the information and data he is dealing with. The SN is considered to be a trusted and secure through isolation from the outside world. Because of the sensible nature of the information (data), there are very strict access restrictions to external resources. Figure 1 depicts an overly simplified network topology.

Securing of the interaction with unsafe resources can be brought down to several main challenges.

1. Mediate and orchestrate the interaction with removable storage devices.

2. Protect the Safe Network from malware residing on external storage devices

3. Protect sensible information from theft or accidental loss of portable devices.

The main design decision was using the concept of “Security by Isolation” in combination with virtualization technology in order to enable better enforcement of security rules and process boundaries, ultimately resulting in better overall security.

From virtualization technology standpoint bare-metal or user-space virtualization solutions can be used. The OpenSecurity project aims at providing a generic Virtual Machine (VM) orchestration layer that can be easily extensible to support further virtualization solutions.

XEN based bare-metal hypervisor has been chosen as underlying framework for part of our implementation. More specifically, QubesOS (XEN/Fedora based hypervisor) already implements the concept of “Security by Isolation” and will be used for systems where such an installation is feasible. At the same time, scenarios exist where installation of a bare-metal hypervisor is not feasible and instead, a user-space virtualisation solution will be used on top of a natively installed operating system (typically VirtualBox on top of Windows operating system).

In the following subsections the use-cases are presented and the architecture in terms of interactions between the individual subsystems.
2.1 Use Cases

2.1.1 Interaction with Removable Storage Devices

The user wants to access a file, residing on an external storage device (e.g. USB memory stick), modify it using a computer within the Safe Network and save it. The target storage can be a removable storage device or to a local network share.

The file can, but not necessarily contains sensible information. Considering the first more sensible scenario certain files or the entire content of the storage device might be encrypted and the user shall be able to provide the necessary encryption key/token.

At the same time the storage device could contain harmful code that should be identified and if possible removed or the containing files quarantined.

The user might choose to encrypt his data upon saving (exporting) to an external storage device.

2.1.2 Joining the Safe Network

After working outside the institutional boundaries (connected to untrusted networks) and being exposed to various threats, the user’s Laptop eventually re-joins the Safe Network. Due to the high risk of external networks the machine is assumed to be compromised and needs to be malware checked and declared secure prior to allowing access to the Safe Network.

2.1.3 Safe Internet Access

The user wants to retrieve a resource from the Unsafe Network and process it on the Safe Network. The user has to be able to use a web browser in order to locate, download, store or copy the resource to the clipboard. This interaction poses several security risks and needs to be mediated in order to protect the Safe Network. The chosen solution for this use-case makes use of virtualization, and network separation between specific virtual machines dedicated for safe and unsafe resource interactions.

2.2 Interaction with Removable Storage Devices

Interaction with removable storage poses serious security risks through automatic or manual execution of malware code residing on such devices. Usage of Anti-Virus software to scan removable storage will only detect malware for which a signature or definition exists. Certain attack vectors might even exploit the USB mass storage device driver within the operating system. One of the main design goals is to prevent the malware from spreading within the Safe Network and eliminate the damage caused by undetected malware. This can be accomplished by mediating the interaction with removable storage through a virtualization layer running on the local machine. This means that the local native OS will not have direct access to the storage device and instead SecurityVM guests will mediate the interaction.

Two configurations are envisaged based on the deployment choice of the institution. The following subsections describes the components and interactions for systems making use of 1).QubesOS bare metal hypervisor and 2).user-space virtualization on top of native operating system (Windows/VirtualBox).

Although dependent of the virtualization technology the VM image format might vary, all SecurityVM instances presented in the following sections are based on a Linux OS distribution and implement the following common functionality:

USB device sharing over TCPIP tunnel

Malware detection and removal

Automatic update

Cryptographic services

File import/export GUI
2.2.1 Local QubesOS based import/export of encrypted data

Upon connection of a removable storage device to a workstation running QubesOS the storage device is detected by the storage domain. The administration domain (Dom0 VM) can intercept this event and trigger the necessary actions for enabling file import.

At first a new Security VM is instantiated from a purpose built VM template, that has the role of scanning the removable storage for malware and provides the software interfaces that enable the user to choose and decrypt the files he/she wants to import.

[image: image2.jpg]
Figure 4 - Import Encrypted Data
Upon connection Dom0 attaches (binds) the storage device to the newly created SecurityVM and initiates the virus scanning (1). Upon completion it publishes the SecurityVM reference to the users AppVMs (2).

At this point the user can query the contents of the storage device from the SecurityVM and choose to import specific files (3). In case of encrypted archive files the user has to provide the key so that SecurityVM can decrypt and malware scan the contents. The selected files are copied to a network share (NFS) and exposed to the other VMs. Dom0 enables network access to the SecurityVM NFS server and the user can retrieve the data (4).

The user can choose to release the storage device, upon which all encrypted archived are closed, the NFS share released, and the SecurityVM destroyed.

Exporting encrypted data can be described as an extension to the import. By making use of the NFS functionality it is possible to write files to the SecurityVM shared folder. These files are scanned and written back to the storage device on demand or upon device release. Upon export the files can be encrypted and the user can select the encryption algorithm of his choice and generate or provide the encryption token. The encryption algorithm used for export can be a different one then the one used for importing the document
.

For the purpose of traceability of sensitive data, logging of the user interaction with the import/export subsystem shall be employed as necessary.

2.2.2 Local Native OS based import/export of encrypted data

Deployment of QubesOS to mobile workstations is not always feasible. Reasons for this are manifold: older mobile workstations have limited resources; deployment on a large number of existing mobile workstations within an institution might not be cost effective; need for personnel training;

[image: image3.jpg]
Figure 5 – Native OS Import Export
Similarly to the section 3.2.1, where QubesOS was used as a virtualization layer to enable execution of the SecurityVM, the following describes the architecture for a solution based on user-space virtualization on top of the native OS(e.g. VirtualBox virtualizer running on Windows).

In order to prevent execution of malware, upon USB removable storage connection the NativeOS shall not load the mass storage device driver and auto-mount the device. This can be prohibited by configuration or removal of the driver. Further on the NativeOS shall trigger the instantiation/start of a SecurityVM instance and USB device attachment to the newly created VM (1). Upon attachment the SecurityVM loads its own mass storage device driver and executes the virus scanning component.

The implementation of the SecurityVM provides a user interface (possibly web interface) that the user can connect to, browse the contents and control various aspects of the import/export workflow (e.g. provide encryption tokens, choose encryption algorithms) (2). The NFS server running within the SecurityVM provides a share used for exchanging the data with the import/export subsystem.
2.2.3 Server based import/export of encrypted data
When connected to the local safe network a dedicated Security Server can take over the scanning and import/export of data from locally connected removable storage devices.

[image: image4.jpg]
Figure 6 - Remote scanning

By connecting a removable storage device to the Laptop running a native operating system (e.g Windows) the USB device is attached to a SecurityVM instance running on top of a local user-space virtualization layer (e.g. VirtualBox). The SecurityVM binds the USBIP device driver to the storage device and exposes the device to the outside world through a dedicated USBIP daemon (accepting USBIP connections on a dedicated TCP/IP port). The USBIP driver is specifically designed to work with a wide range of USB devices, and the accompanying server provides a TCP/IP tunnel for the USB protocol. The security server is notified about the existence of the new device (1).

Following the SecurityServer connects to the USBIP daemon and attaches, mounts and scans the contents of the removable storage device (2). Upon successful scan the user can select the files that shall be imported (3). It does so by making use of a client component and interfaces provided by the SecurityServer. In order to enable the import the server requests the necessary keys in order to enable the scanning of the encrypted files. Upon import completion the imported files are exposed through a network share, and can be retrieved by the client (4
).

In a similar manner to import, export is realized by making use of the client component for selecting the file and encryption token. After successful scanning the file is encrypted and copied to the removable storage. The SecurityServer will support the client in providing the encryption token and selecting the encryption algorithm.

2.3 SecurityVM Template Management and Update

One of the main architectural features is the use of the SecurityVM in order to enforce protect and mediate the data exchange. Such VMs have to meet several high level requirements in order to allow for a fast and productive interaction with the system:

1. instantiation and startup time shall not produce significant interruption in the users-workflow

2. VM shall be disposable (evtl. disposing policy customising)

3. Automatic VM update shall be possible.
The technical solutions for meeting these requirements differ depending on the virtualization technology. One of the simplest form of instantiation is VM cloning. This process effectively duplicates the VM filesystem images and requires additional configuration to avoid conflicts between instances originating from the same source VM. Cloning is possible under most virtualization solutions. vmWare and QubesOS allow for template based VM instantiation, meaning that a new instance is created based on a configuration file (template). Dependent on the used technology the fastest supported method shall be used in order to reduce the creation time.

OpenSecurity framework shall provide an abstraction layer on top of the various virtualization technologies and implement the functionality for instantiation, startup, update and disposal of VMs as well as its own VM template subsystem and VM management.

While short VM startup times are important for on demand VM creation scenarios, OpenSecurity shall implement a VM management layer, including definable policies for in advance (a-priori) creation and startup of Security VMs.
2.4 Joining the Safe Network

The laptops of users working part time outside of institutional boundaries and joining public (unsecure) networks can become compromised and pose threat to the network security. Thus such systems have to be malware scanned and updated upon re-joining the home network and accessing sensible content from the network shares. In the following we assume that QubesOS is installed on the mobile workstation.

[image: image5.jpg]
Figure 7 - Self Scanning and Update
Upon re-joining the safe network the security anti-virus definitions on the mobile workstation have to be updated prior to executing a full system scan (dom0 and all virtual guests). Upon connection to the institutional network the QubesOS running on the mobile workstation (netVM) receives an IP address in a subnet where only access to the SecurityServer is provided. Consequently netVM/firewallVM triggers the full system scan by notifying the administrative domain (dom0) (3). In response Dom0 starts the SecurityVM template (1) and initiates its update. The SecurityVM template updates itself based on the definitions received from the SecurityServer(2).

Upon successful SecurityVM update, Dom0 creates a new SecurityVM instance and instructs the AppVM’s to share their private content (/home and /usr/local) folders through NFS, in order to be scanned (4).

As an alternative to using NFS, Dom0 has access to the private data of the AppVMs in the form of image files and it is possible to provide these to the SecurityVM for scanning in form of loopback devices. By using this method no memory scanning is possible as the AppVM has to be shut down.

After scanning the results are sent by netVM/firewallVM to the SecurityServer where the decision for allowing access to the safe network and network shares is taken (6). Upon completion Dom0 can choose to destroy the SecurityVM instance.

One further possible solution for this use-case would employ two parallel operating systems on the same machine, one of them used for working within the Safe Network while the other one for the Unsafe Network. This solution has to ensure the isolation of the two operating systems (e.g. through file-system encryption) while at the same time to only allow the execution of either operating system when connected to its designated network.

2.5
Safe Internet Access

The solution for providing security while enabling users with safe access to network resources cannot be a pure technological one. The security threats in this interaction are manifold and the system might be compromised by the plethora of malware and attacks one is exposed to when connected to and interacting with an untrusted network (typically internet).

The main goal is to secure the data and information the user is working with from unwanted access and modification. While anti-malware software is a good prevention mechanism it does not protect from zero-day threats. As in the case of interaction with RSDs we make use of the concept of “security by isolation” and implement it using disposable virtual machines. So even if undetected, the malware’s execution environment is that of an inhospitable virtual system with limited resources and capabilities where any changes are lost upon VM restart.

These enabling technologies require minimal user training and provide a high level of security requiring the user to follow predefined guidelines when interacting with the system. They do not protect the system and user data from accidental or intentional user misuse.

[image: image6.jpg]
Figure 8 - Safe Internet Access

As in the case of interaction with RSDs the user shall make use of a dedicated SecurityVM for browsing network resources by preinstalled software components. A new SecurityVM shall be instantiated on demand and interaction shall be possible through a remote connection. The software solution for the remote connection is platform dependent and controlled by a VM management layer on the host platform. File transfer and clipboard (copy/paste) functionality is to be treated similarly to the RSD import/export functionality described in chapter 2.2.
3 Implementation guidelines

This section aims at providing a short summary on the preliminary OpenSecurity implementation decisions and used technologies.

Independent of whether the OpenSecurity system (see Figure 11 - Implementation Guidelines is installed on a workstation or server the commons are the existence of a virtualization layer and one or more Security Virtual Machine (SVM) instances.
[image: image7.jpg]
Figure 11 - Implementation Guidelines

QubesOS provides a VM management layer on top of the virtualization layer providing VM template management, creation, update and disposal of VM instances. It is implemented in the form of a Python and compiled code framework that controls the XEN hypervisor and can easily be extended. The functionality for managing interaction with RSDs and SVM orchestration has to be implemented within the scope of the project. The user-space virtualization solutions (VirtualBox, vmWare) also provide a much simpler management layer that has to be extended. Management of SVMs and interaction with RSDs will be achieved by introducing a virtualization abstraction layer (by implementing virtualization specific adapters) in order to allow for generic interaction with the virtualization layer. The implementation will be in the form of a framework of Python scripts and C++ / Boost binaries.

Similarly within the SVM beside Truecrypt and Ikarus Antivirus engine there are many other alternatives that one might consider using. Although we will only provide support for the two abovementioned ones an abstraction layer shall be implemented at this level in the form of a framework implemented in Python/C++.

User interaction with the SVM shall be achieved through a secure shell (SSH) with a graphical frontend (GUI). The user interface should be able to execute from the administrative domain (Xen DOM0 / Native OS) or from a VM. From this results the requirement for portable code and UI toolkit and Java as straight forward solution.

SVM secure accesss to and file transfer can be achieved by making use of existing SSH utilities for copy (scp), secure file transfer protocol (sftp) and secure shell file system mounts (sshfs).

3.1 Workflow “Interaction with Removable Storage Devices”

The following subsections describe the main workflows and user-system interactions for the removable storage import/export functionality.
3.1.1 Export Encrypted Data

1. User tries to export Data.

2. User connects removable storage (e.g. USB memory stick) to the computer.

3. User starts OpenSecurity client.

4. User selects “data export” in the client.

5. User selects the data to export.

6. User selects the destination for the export.

7. User enters his password or gives his key-file to the client.

8. User clicks on “start export”.

9. Data will be transferred to local Security VM/server.

10. Data will be scanned for malware (e.g. virus, worm, Trojan horse).

11. Data will be encrypted on the Security VM/server.

12. Data will be encrypted. See “Encryption and Decryption”.

12.1. If occurring, error messages have to be delivered to the user.

13. Anti virus VM/server write encrypted data direct to the storage.

14. User gets a success message from the OpenSecurity client.

[image: image8.png]
Figure 2 - Export Encrypted Data

3.1.2 Import Encrypted Data

1. User connects removable storage (e.g. USB memory stick) to the computer.

2. User starts the OpenSecurity client.

3. User selects “import Data”.

4. User selects data. User selects the destination for the import.

5. System decides if data is encrypted (white list).

6. User enters his password or gives his key-file to the client if the data is encrypted.

7. User clicks on “start import”.

8. Encrypted container or plain data will be transferred to the Security VM/server

9. If data is an encrypted container, the system (Security VM/server) will decrypt it. See “Encryption and Decryption”.

9.1. If occurring, error messages have to be delivered to the user.
10. Data will be scanned for malware (e.g. virus, worm, Trojan horse). Security VM/server writes encrypted data directly to the local storage.

11. User gets a success message from the OpenSecurity client.

[image: image9.png]
Figure 3 - Import Encrypted Data

3.2 Antivirus Tools and Usage Patterns

We’ve discussed several possibilities concerning the integration of malware identification within the proposed framework. The generic approach has been outlined above and contains a SecurityVM within a modular server structure. The SecurityVM is able to identify malware with help of scan server module.s

The scan server module can be integrated as a central instance behind a load balancer or be located within a client based virtual environment. Having that the access and the data flow to and from the scan server/s can be strictly managed and secured. The location decision concerning the dropbox and the verified storage is independent from the location of the scan server.

The basic workflow looks like this:

[image: image10.emf]Scan server

Dropbox

FileShare

Figure 9 - Basic Workflow

This scenario can be in any environment. The following non-complete matrix shows the most likely combinations.

	Dropbox
	Scan Server
	FileShare

	Local
	Local
	Local

	Local
	Central (network)
	Local

	Central (network)
	Local
	Central (network)

	Central (network)
	Central (network)
	Central (network)

Table 1
The scan server itself comes along with a RESTFul API and can thus be located within any environment. The comparison between the local or the central integrated scan server can be simplified by the inspection of certain features and possibilities. The following paragraphs will first introduce the characteristics. Thereafter a direct comparison will be listed.
· Scalability
A locally installed scan server can of course be duplicated but will in any case consume limited resources. The central approach could integrate a load balancer and set up additional servers. Hence, the central service can be adjusted and extended more easily.
· Maintenance/Integration
The local integration comes along with a more complex integration for each client. The administrative work to be done is thus much more complex and time consuming.
· Network load
The network load is of course minimized by the local integration.
· Virus DB/Engine Updating
The updating process can be managed and maintained more easily in the central approach. The supervision is also much easier in this case.
· Mobility
The local integration enables mobile devices to be disconnected from the company network and could assure a certain security in case of mobile activities without having access to the institutions network.

The usage and integration requirements will actually decide the integration approach. The free configurability of the infrastructure (Table 1) together with the RESTFUL scan server API as well as the pros and cons for certain attributes enables the framework to be rather flexible in terms of integration.

This insight enables the design of a system with a central scan server for usual workstations and mobile devices per default. In addition mobile devices come along with a local scan server integrated which is only activated in case the mobile device is not connected to the company network. This would enable a more secure working environment during traveling. Of course a final check or verification of the central scan server has to be performed before the data is integrated to central storage system.

3.3 Cryptographic Algorithms and Services

If company data leaves the house on a mobile device like an USB stick or a laptop, encryption is a must have. The device can be lost or stolen and after such an event the documents on it should not get revealed to public or to a competitor. Also if data is transferred from one company to another or between branch offices privacy of the transferred data should be ensured.

Other problems come up when encrypted data should be imported to the institutional Safe Network. The data can contain maleware, but the anti virus software can not check encrypted data. So the import workflow has to include a detection and decryption – if possible – of encrypted data prior to the virus-checking phase. If the data can be decrypted and is free of viruses and malware it can be imported to the Safe Network.

Based on these requirements and the needs from the demand carriers we searched for and evaluated possible solutions. In general, there are not much alternatives for encryption systems fulfilling the given requirements: The user requests for an easy usable and secure system that is compatible in a wide range. This means it should be possible to create, open and update encrypted files with different operating systems (e.g. Windows, Linux, MacOS).

The only system independent and widely used software for such purposes is TrueCrypt. TrueCrypt uses encrypted containers for saving files into it. It also provides different encryption and hash algorithms that can be combined in several ways.

3.3.1 Standard TrueCrypt workflow

The standard usage of TrueCrypt is explained in the next steps:

At first an encrypted container has to be created (1). At creation time the user can choose the size of the container, the used encryption and hash algorithms. Most used combination is AES as encryption algorithm and RIPEMD-160 as hash algorithm. After that the user has to choose a password or a keyfile to protect the data. The last step of the creation process is to choose a filesystem like FAT, NTFS or ext4 for the container.

The next step would be to mount the container and fill it with data (2). For this, the user has to type in his password or use his keyfile to decrypt the container. The TrueCrypt device driver masquerades the complete encryption/decryption process and the user will only see an extra disc on his system.

[image: image11.png]
Figure 10 - TrueCrypt workflow

The user can use this disc like any other drive on his system to open or save data on it. The files get de-/encrypted on the fly (3).

At last the container gets unmounted from the system (4). The user can now save the container to a memory stick or any other portable device. If the device gets lost or is stolen the documents in the container stay encrypted and hidden. Thus they cannot be used or revealed.

To use an already encrypted container its only necessary to redo the steps 2 through 4.

3.3.2 Integration into the OpenSecurity layer

In the OpenSecurity system this steps are nearly the same, but get executed automatically by a virtual machine. The only needed user interactions would be to select the data and provide the password or keyfile for de-/encryption.

A user
 interface for interaction with the SecurityVM’s shall be implemented that allows for the orchestration of the import/export and encryption backend. The SecurityVM implements the backend in form of an easily extensible series of components (scripts or compiled code) that are accessible from the virtualizer or oder VMs through a Secure Shell daemon.

As an initial implementation the system will make use of the Truecrypt encryption component. A modular approach shall be used to enable easy extension by other end-user specific solutions and encryption algorithms. This requires the backend components to implement an abstraction layer and generic interfaces effectively hiding the complexity and inner workings of encryption engines, key management and file sharing.

The network traffic to and from the SecurityVM shall be filtered (limited to specific ports and sub-networks) in order to ensure that undetected malware cannot escape the boundaries of the SecurityVM and compromise the rest of the system.

3.3.3 Problems in this solution

As mentioned above in 3.5 all files that get imported must be checked if they are encrypted. If a file is encrypted it has to go through the decryption workflow and after that the encrypted data has to be scanned for malware.

Because of the nature of encryption, encrypted files look like absolute random data. It is very hard to recognize if a file is encrypted or if the file is only filled with random bytes. It's only possible to test with a heuristic method if the file has a high probability to be an encrypted file or container.

One of the ways to solve this issue is a whitelist. Only definitely known files – like text documents or images – can pass the whitelist. Encrypted files will be checked for predefined headers by a heuristic method like mentioned above. If they pass the whitelist filter the decryption routines can handle them else some extra actions have to be done.
All other files are not imported at all or are quarantined and have to be checked by a supervisor.

The drawback of this solution is, that a higher instance with some technical know how is needed that can decide if a quarantined file is not harmful. Also an administration interface should be implemented to handle such events in an easy way.

4 References

5 Annexes

5.1 Encryption and Decryption

The following provides the necessary steps for creating and mounting an encrypted file container in terms of a example based on truecrypt.

1.a
Create a container with password:

truecrypt -c "containername" --password="password" --volume-type=normal --filesystem=none --encryption=aes --size="size" --hash=SHA-512 --random-source=/dev/urandom -k "" --non-interactive

If the user should type in the password a user interaction is necessary. The creation process can take a long time. The bigger the container should be, the more time is needed for the process to create it.

1.b
Create a container with an key-file:

truecrypt -c "containername" --volume-type=normal --filesystem=none --encryption=aes --size="size" --hash=SHA-512 --random-source=/dev/urandom -k "keyfile" --non-interactive

If the key-file is protected with an passphrase a user interaction is necessary.

2.a
Decrypt the container with an password:

truecrypt "containername" --password="password" --filesystem=none -k "" --protect-hidden=no --non-interactive

If the user should type in the password a user interaction is necessary.
2.b
Container entschlüsseln mit keyfile:
truecrypt "containername" --filesystem=none -k "keyfile" --protect-hidden=no --non-interactive

If the key-file is protected with an passphrase a user interaction is necessary.

3
Find the decrypted container.:

truecrypt –l

1: /path/containername /dev/mapper/truecrypt1

4
Create a filesystem in the container:

mkfs.ntfs /dev/mapper/truecrypt1

5
Mount the container:

mount /dev/mapper/truecrypt1 /mountpoint

6
Copy files into the container:

cp/rsync/mv/scp /source /mountpoint

7
Unmount the container:

umount /mountpoint

truecrypt -d "containername"

8
Open an existing container:

See points “2.a/b”, “6” and “7”.

5.2 Initial high lever requirements

Several high level requirements can be identified from the above use cases. Based on the user questionnaire further requirements will be documented as soon as they will be available.

1. The user shall store the document at a predefined location from where the security system can take the data check and copy it to a safe location accessible from the SAFE LAN.

2. The external storage shall not be connected to the SAFE LAN in order to prevent execution or insertion of malicious code within the network.

3. The storage device shall be connected to a machine that ideally cannot natively execute code residing on the device (e.g. file server running on an embedded device).

4. File-system shall be virus-checked upon connection to the UNSAFE LAN.

5. If the file-system is encrypted, if possible, decryption shall be performed previously to virus-checking.

6. If only specific parts of the file-system are encrypted this shall be detected and, if possible, those portions decrypted and virus checked. Otherwise the specific parts should be quarantined and checked by a supervisor.

7. Requested virus checked files shall be copied (pushed) at a safe location from where users from the SAFE LAN can access them (pull).

After saving the changes, the file shall be virus-checked prior to encryption and storage to the external media.

�Solved

�Possible logging of data export/import respectively data flow should be mentioned. Here or elsewhere?

�Solved (redesign no Windows based USBIP daemon)

�@Mihai: At the consortium meeting you wanted to include USB-IP + Daemon + SecurityVM inside Windows Virtualization (e.g. Virtbox).

�Please describe some architectural solutions for use-case 1.2.2 safe internet access.�Also mention firewall/security possibilities for safe internet access with virtualization trough QubesOS.

�Solved

�Please extend description how encryption is interacting with SES/SecurityVM

Also: do we allow other encryption methods than true crypt? Modular approach?

�Solved

�Deleteme

�I think we could already extract some more requirements from the „Architecture discussion paper“ of the last consortium meeting.

�Offline functionality for mobile devices – OpenSecurity offline solution with reduced feature set is a nice-to-have requirement.�Include here and maybe at architecture?

5 | Page

[image: image12.png]_2147483647.vsd
�

