Project: OpenSecurity

Architecture
	Document Control Page

	Creator
	AIT

	Editor
	Mihai Bartha

	Subject
	OpenSecurity - Architecture

	Meeting date(s)
	

	Meeting location
	

	Publisher
	OpenSecurity consortium

	Type
	Text

	Format
	Application/msword

	Language
	EN-GB

	Creation date
	2013-01-07

	Rights
	© Copyright “OpenSecurity consortium”.

	Audience
	 FORMCHECKBOX
 internal

	Review status
	 FORMCHECKBOX
 Draft

 FORMCHECKBOX
 Final

	Action requested
	 FORMCHECKBOX
 to be checked by Partners present at the meeting

	Revision history

	Version
	Date
	Modified by
	Comments

	0.1
	2013-04-12
	Mihai Bartha
	Initial version

	0.2
	2013-04-19
	Jürgen Eckel
	Extended Chapter 3.1

	0.3
	2013-04-22
	Mihai Bartha
	Integrated section 3.2

	0.4
	2013-05-27
	Frank Treichl
	Translating and modifications on 2.1.1, 2.1.2 and 6.1.1

Table of contents

1 Introduction
5
2 Use Cases
6
2.1 Interaction with Removable Storage
6
2.1.1 Use-case „Export Encrypted Data“
6
2.1.1 Use-case „Import Encrypted Data“
7
2.2 Interaction with Unsafe Network
8
2.2.1 Use-case “Laptop joins Safe Network”
8
2.2.2 Use-case „Safe Internet Access”
9
3 Requirements
10
3.1 Initial high lever requirements
10
4 Architecture
11
4.1 Overview
11
4.2 Interaction with Removable Storage
11
4.2.1 Locally connected storage devices
11
4.2.1.1 Import Encrypted Data
11
4.2.1.2 Export Encrypted Data
12
4.2.2 Remote scanning of storage devices
12
4.2.2.1 Import encrypted data
12
4.2.2.2 Export encrypted data
13
4.3 Interaction with Unsafe Network
13
4.3.1 Self Scan – Join Local Network
13
4.4 Antivirus Tools and Usage Patterns
14
4.5 Cryptographic Algorithms and Services
16
4.5.1 Standard TrueCrypt workflow
16
4.5.2 Integration into the OpenSecurity layer
17
4.5.3 Problems in this solution
17
5 References
18
6 Annexes
19
6.1 Encryption and Decryption
19

1 Introduction

This document aims at providing the architecture based on the requirements identified in AP2. One of the main challenges of the OpenSecurity project is enabling the users, currently restricted to a closed and secure local network, to work with external resources. Figure 1 below depicts a simplified network topology. Currently the user is limited to the institutional Safe Network dealing with sensible information within a secure, from the outside world isolated network. Because of the sensible nature of the information (data) the user is dealing with, there are very strict access restrictions to external resources. These restrictions encompass access to external untrusted portable storage devices or internet resources (WWW) depicted on the left side of the figure and labelled Unsafe Network.

Two main topics will be addressed within the scope of the OpenSecurity project. The first one will be addressed in first year of the project and concerns interaction with removable storage devices. The second topic addresses interaction with the external network resources (WWW) and mobile workstations (e.g. Laptops). Security of mobile devices (Smart-Phones, Tablets, etc.) is not in the scope of the project as these devices use a plethora of proprietary software and no generic solution can be implemented.

Securing of the interaction with removable storage can be brought down to several use-cases and challenges.

1. Mediate and orchestrate the interaction with removable storage devices.

2. Protect the Safe Network from malware residing on external storage devices

3. Protect sensible information from theft or accidental loss of portable devices.

[image: image1.jpg]Removable Storage

Figure 1 - Network Topology

2 Use Cases

2.1 Interaction with Removable Storage

The user wants to access a file, residing on an external storage device (e.g. USB memory stick), modify it using a computer within the Safe Network and save it back to the same device for transport, or to a local network share.

The file can but not necessarily contains sensible information. Considering the first more sensible scenario certain files or the entire content of the storage device might be encrypted.

At the same time the storage device could contain harmful code that should be identified and if possible removed or the containing files quarantined.

The user might choose to encrypt his data upon saving (exporting) to an external storage device.

2.1.1 Use-case „Export Encrypted Data“

1. User tries to export Data.

2. User connects storage (USB stick, HD, …) to the computer.

3. User starts OpenSecurity client.

4. User selects “data export” in the client.

5. User selects the data to export.

6. User selects the destination for the export.

7. User enterS his password or gives his key-file to the client.

8. User clicks on “start export”.

9. Data will be transferred to local Security VM/server.

10. Data will be scanned for malware (virus, worm, trojan, …).

11. Data will be encrypted on the Security VM/server.

12. Data will be encrypted. See “Encryption and Decryption”.

12.1. If occuring, error messages have to be delivered to the user.

13. Anti virus VM/server write encrypted data direct to the storage.

14. User gets a success message from the OpenSecurity client.

[image: image2.png]User Open Security Security
Client VMiserver

Request data export

Get data Internal Storage

Get data (samba, ...)
[=edad
Get data

Retrun data

Scan data
Clean data

=S
Encrypt dat

crypied data Extemnal Storage

(USB Stick, ...)

_Possible Erm

_Possible Err Wiite data.
| EEam——

Success
Success

Figure 2 - Export Encrypted Data

1.1.1 Use-case „Import Encrypted Data“

1. User connects storage (USB stick, HD, …) to the computer.

2. User starts the OpenSecurity client.

3. User selects “import Data”.

4. User selects data. User selects the destination for the import.

5. System decides if data is encrypted (white list).

6. User enter his password or gives his key-file to the client if the data is encrypted.

7. User clicks on “start import”.

8. Encrypted container or plain data will be transferred to the Security VM/server

9. If data is an encrypted container, the system (Security VM/server) will decrypt it. See “Encryption and Decryption”.

9.1. If occuring, error messages have to be delivered to the user.

Data will be scanned for malware (virus, worm, trojan, …). Security VM/server write encrypted data direct to the local storage.

10. User gets a success message from the OpenSecurity client.

[image: image3.png]Open Security
Client

equest data import

Select destination

_Possible Err

_Possible Err

Security
VMiserver

Encrypted?,
0

Encrypted!

Decrypt datg
Qgcrypted datal

Scan data.

Clean data’

Write data,
>

Success

External Storage
(USB Stick, ...)

Get data
Retrun data

Internal Storage
(samba,)

Figure 3 - Import Encrypted Data

1.2 Interaction with Unsafe Network

1.2.1 Use-case “Laptop joins Safe Network”

After working outside the institutional boundaries (connected to untrusted networks) and being exposed to various threats, the user’s Laptop eventually re-joins the Safe Network. Due to the high risk of external networks the machine is assumed to be compromised and needs to be malware checked and declared secure prior to allowing access to the Safe Network.

A laptop using QubesOS allows, through its implementation of the security by isolation concepts, for an elegant solution as described in Section 2.2.1 of the current document.

One further solution for this use-case employs two parallel operating systems on the same machine, one of them used for working within the Safe Network while the other one for the Unsafe Network. This solution has to ensure the isolation of the two operating systems (e.g. through file-system encryption) while at the same time to only allow the execution of either operating system when connected to its designated network.

1.2.2 Use-case „Safe Internet Access”

The user wants to retrieve a resource from the Unsafe Network and process it on the Safe Network. The user has to be able to use a web browser in order to locate, download, store or copy the resource to the clipboard. This interaction poses several security risks and needs to be mediated in order to protect the Safe Network. Possible solutions for this use-case involve virtualization, and network separation between virtual machines dedicated for Safe and Unsafe resource interactions.

This functionality will be addressed in the second year of the OpenSecurity project, where this generic use-case will be examined in more detail.

2 Requirements

2.1 Initial high lever requirements

Several high level requirements can be identified from the above use cases. Based on the user questionnaire further requirements will be documented as soon as they will be available.

1. The user shall store the document at a predefined location from where the security system can take the data check and copy it to a safe location accessible from the SAFE LAN.

2. The external storage shall not be connected to the SAFE LAN in order to prevent execution or insertion of malicious code within the network.

3. The storage device shall be connected to a machine that ideally cannot natively execute code residing on the device (e.g. file server running on an embedded device).

4. File-system shall be virus-checked upon connection to the UNSAFE LAN.

5. If the file-system is encrypted, if possible, decryption shall be performed previously to virus-checking.

6. If only specific parts of the file-system are encrypted this shall be detected and, if possible, those portions decrypted and virus checked. Otherwise the specific parts should be quarantined and checked by a supervisor.

7. Requested virus checked files shall be copied (pushed) at a safe location from where users from the SAFE LAN can access them (pull).

8. After saving the changes, the file shall be virus-checked prior to encryption and storage to the external media.

3 Architecture

3.1 Overview

The main design decisions was using the concept of “Security by Isolation” in combination with virtualization technology in order to enable better enforcement of security rules and process boundaries, ultimately resulting in better security. QubesOS is a XEN based hypervisor that implements the above mentioned concept and has been chosen as underlying framework for our implementation.

This section provides the initial system architecture in terms of components and interactions for the use-cases described in the sections 2.1 and 2.1.1.

3.2 Interaction with Removable Storage

3.2.1 Locally connected storage devices

3.2.1.1 Import Encrypted Data

Upon connection of a removable storage device to a workstation running QubesOS the storage device is detected by the storage domain. The administration domain (Dom0 VM) can intercept this event and trigger the necessary actions for enabling file import.

At first a new Security VM is instantiated from a purpose built VM template, that has the role of scanning the removable storage for malware and provides the software interfaces that enable the user to choose and decrypt the files he/she wants to import.

[image: image4.jpg](4) copy imported files-

PersonalVM [———(3) get contents/ provide key / Iitiate import——— _ SecurityVM

(21 publish new SecurtWa————| Do [41) create 1/ attachdevice ntatescan

Figure 4 - Import Encrypted Data

Upon connection Dom0 attaches (binds) the storage device to the newly created SecurityVM and initiates the virus scanning (1). Upon completion it publishes the SecurityVM reference to the users AppVMs (2).

At this point the user can query the contents of the storage device from the SecurityVM and choose to import specific files (3). In case of encrypted archive files the user has to provide the key so that SecurityVM can decrypt and malware scan the contents. The selected files are copied to a network share (NFS) and exposed to the other VMs. Dom0 enables network access to the SecurityVM NFS server and the user can retrieve the data (4).

The user can choose to release the storage device, upon which all encrypted archived are closed, the NFS share released, and the SecurityVM destroyed.

3.2.1.2 Export Encrypted Data

Exporting encrypted data can be described as an extension to the previous section. By making use of the NFS functionality it is possible to write files to the SecurityVM shared folder. These files are scanned and written back to the storage device on demand or upon device release. Upon export the files can be encrypted and the user can select the encryption algorithm of his choice and generate or provide the encryption token. The encryption algorithm used for export can be a different one then the one used for importing the document.

3.2.2 Remote scanning of storage devices

3.2.2.1 Import encrypted data
The Security Server located on the local safe network handles the scanning an import/export of data from removable storage devices.

[image: image5.jpg]v

1) publish devic

{2) conect attach device/scar

[r——

|31 get contents / provide key ntate mport——p|

%

(4) copy imported files

Securityserver

securi

e

Figure 5 - Remote scanning

By connecting a removable storage device to the Laptop running a native operating system (e.g Windows) the USBIP device driver is loaded for and the device is exposed to the outside world. The USBIP driver is specifically designed to work with a wide range of USB devices, and the accompanying server provides a TCP/IP tunnel for the USB protocol. The security server is notified about the existence of the new device (1).

Following the server connects to the Laptop and attaches, mounts and scans the contents of the removable storage device (2). Upon successful scan the user can select the files that shall be imported (3). It does so by making use of a client component and interfaces provided by the server. In order to enable the import the server requests the necessary keys in order to enable the scanning of the encrypted files. Upon import completion the imported files are exposed through a network share, and can be retrieved by the client (4).
3.2.2.2 Export encrypted data
Similarly to import described in section 4.2.2.1 export is realized by making use of the client component for selecting the file and encryption token. After successful scanning the file is encrypted and copied to the removable storage. The server will support the client in providing the encryption token and selecting the encryption algorithm.
3.3 Interaction with Unsafe Network

3.3.1 Self Scan – Join Local Network

The laptops of users working part time outside of institutional boundaries and joining public (unsecure) networks can become compromised and pose threat to the network security. Thus such systems have to be malware scanned and updated upon re-joining the home network and accessing sensible content from the network shares. In the following we assume that QubesOS is installed on the mobile workstation.

[image: image6.jpg](5) scan VM.

SecurityVha

personatvia e e, 42 pdatetrplten| Securtysever
x
et/
ety 1) start tomplate e trgger update 6] allow AN acess for
s
T viggerscan
Domo. rsisial Fileshare

) create Securio/vMirigger scan

Figure 6 - Self Scanning and Update

Upon re-joining the safe network the security anti-virus definitions on the mobile workstation have to be updated prior to executing a full system scan (dom0 and all virtual guests). Upon connection to the institutional network the QubesOS running on the mobile workstation (netVM) receives an IP address in a subnet where only access to the SecurityServer is provided. Consequently netVM/firewallVM triggers the full system scan by notifying the administrative domain (dom0) (3). In response Dom0 starts the the SecurityVM template (1) and initiates its update. The SecurityVM template updates itself based on the definitions received from the SecurityServer(2).

Upon successful SecurityVM update, Dom0 creates a new SecurityVM instance and instructs the AppVM’s to share their private content (/home and /usr/local) folders through NFS, in order to be scanned (4).

As an alternative to using NFS, Dom0 has access to the private data of the AppVMs in the form of image files and it is possible to provide these to the SecurityVM for scanning in form of loopback devices. By using this method no memory scanning is possible as the AppVM has to be shut down.

After scanning the results are sent by netVM/firewallVM to the SecurityServer where the decision for allowing access to the safe network and network shares is taken (6). Upon completion Dom0 can choose to destroy the SecurityVM instance.

3.4 Antivirus Tools and Usage Patterns

We’ve discussed several possibilities concerning the integration of malware identification within the proposed framework. The generic approach has been outlined above and contains a SecurityVM within a modular server structure. The SecurityVM is able to identify malware with help of scan server module..

The scan server module can be integrated as a central instance behind a load balancer or be located within a client based virtual environment. Having that the access and the data flow to and from the scan server/s can be strictly managed and secured. The location decision concerning the dropbox and the verified storage is independent from the location of the scan server.

The basic workflow looks like this:

[image: image7.emf]Scan server

Dropbox

FileShare

Figure 7 - Basic Workflow

This scenario can be in any environment. The following non-complete matrix shows the most likely combinations.
	Dropbox
	Scan Server
	FileShare

	Local
	Local
	Local

	Local
	Central (network)
	Local

	Central (network)
	Local
	Central (network)

	Central (network)
	Central (network)
	Central (network)

Table 1
The scan server itself comes along with a RESTFul API and can thus be located within any environment. The comparison between the local or the central integrated scan server can be simplified by the inspection of certain features and possibilities. The following paragraphs will first introduce the characteristics. Thereafter a direct comparison will be listed.
· Scalability
A locally installed scan server can of course be duplicated but will in any case consume limited resources. The central approach could integrate a load balancer and set up additional servers. Hence, the central service can be adjusted and extended more easily.
· Maintenance/Integration
The local integration comes along with a more complex integration for each client. The administrative work to be done is thus much more complex and time consuming.
· Network load
The network load is of course minimized by the local integration.
· Virus DB/Engine Updating
The updating process can be managed and maintained more easily in the central approach. The supervision is also much easier in this case.
· Mobility
The local integration enables mobile devices to be disconnected from the company network and could assure a certain security in case of mobile activities without having access to the institutions network.

The usage and integration requirements will actually decide the integration approach. The free configurability of the infrastructure (Table 1) together with the RESTFUL scan server API as well as the pros and cons for certain attributes enables the framework to be rather flexible in terms of integration.

This insight enables the design of a system with a central scan server for usual workstations and mobile devices per default. In addition mobile devices come along with a local scan server integrated which is only activated in case the mobile device is not connected to the company network. This would enable a more secure working environment during traveling. Of course a final check or verification of the central scan server has to be performed before the data is integrated to central storage system.

3.5 Cryptographic Algorithms and Services

If company data leaves the house on a mobile device like an USB stick or a laptop, encryption is a must have. The device can be lost or stolen and after such an event the documents on it should not get revealed to public or to a competitor. Also if data is transferred from one company to another or between branch offices privacy of the transferred data should be ensured.

Other problems come up when encrypted data should be imported to the institutional Safe Network. The data can contain maleware, but the anti virus software can not check encrypted data. So the import workflow has to include a detection and decryption – if possible – of encrypted data prior to the virus-checking phase. If the data can be decrypted and is free of viruses and malware it can be imported to the Safe Network.

Based on these requirements and the needs from the demand carriers we searched for and evaluated possible solutions. In general, there are not much alternatives for encryption systems fulfilling the given requirements: The user requests for an easy usable and secure system that is compatible in a wide range. This means it should be possible to create, open and update encrypted files with different operating systems (e.g. Windows, Linux, MacOS).

The only system independent and widely used software for such purposes is TrueCrypt. TrueCrypt uses encrypted containers for saving files into it. It also provides different encryption and hash algorithms that can be combined in several ways.

3.5.1 Standard TrueCrypt workflow

The standard usage of TrueCrypt is explained in the next steps:

[image: image8.png]create encrypted container encrypted

) [container
dokuments|

mount encrypted container
@) ml mounted
Container

@)

Y

unmount container encrypted
e
() container

Figure 8 - TrueCrypt workflow

At first an encrypted container has to be created (1). At creation time the user can choose the size of the container, the used encryption and hash algorithms. Most used combination is AES as encryption algorithm and RIPEMD-160 as hash algorithm. After that the user has to choose a password or a keyfile to protect the data. The last step of the creation process is to choose a filesystem like FAT, NTFS or ext4 for the container.

The next step would be to mount the container and fill it with data (2). For this, the user has to type in his password or use his keyfile to decrypt the container. The TrueCrypt device driver masquerades the complete encryption/decryption process and the user will only see an extra disc on his system.

The user can use this disc like any other drive on his system to open or save data on it. The files get de-/encrypted on the fly (3).

At last the container gets unmounted from the system (4). The user can now save the container to a memory stick or any other portable device. If the device gets lost or is stolen the documents in the container stay encrypted and hidden. Thus they cannot be used or revealed.

To use an already encrypted container its only necessary to redo the steps 2 through 4.

3.5.2 Integration into the OpenSecurity layer

In the OpenSecurity system this steps are nearly the same, but get executed automatically by a virtual machine. The only needed user interactions would be to select the data and provide the password or keyfile for de-/encryption.

3.5.3 Problems in this solution

As mentioned above in 4.5 all files that get imported must be checked if they are encrypted. If a file is encrypted it has to go through the decryption workflow and after that the encrypted data has to be scanned for malware.

Because of the nature of encryption, encrypted files look like absolute random data. It is very hard to recognize if a file is encrypted or if the file is only filled with random bytes. It's only possible to test with a heuristic method if the file has a high probability to be an encrypted file or container.

One of the ways to solve this issue is a whitelist. Only definitely known files – like text documents or images – can pass the whitelist. Encrypted files will be checked for predefined headers by a heuristic method like mentioned above. If they pass the whitelist filter the decryption routines can handle them else some extra actions have to be done.
All other files are not imported at all or are quarantined and have to be checked by a supervisor.

The drawback of this solution is, that a higher instance with some technical know how is needed that can decide if a quarantined file is not harmful. Also an administration interface should be implemented to handle such events in an easy way.

4 References

5 Annexes

5.1 Encryption and Decryption

The following provides the necessary steps for creating and mounting an encrypted file container in terms of a example based on truecrypt.

1.a
Create a container with password:

truecrypt -c "containername" --password="password" --volume-type=normal --filesystem=none --encryption=aes --size="size" --hash=SHA-512 --random-source=/dev/urandom -k "" --non-interactive

If the user should type in the password a user interaction is necessary. The creation process can take a long time. The bigger the container should be, the more time is needed for the process to create it.

1.b
Create a container with an key-file:

truecrypt -c "containername" --volume-type=normal --filesystem=none --encryption=aes --size="size" --hash=SHA-512 --random-source=/dev/urandom -k "keyfile" --non-interactive

If the key-file is protected with an passphrase a user interaction is necessary.

2.a
Decrypt the container with an password:

truecrypt "containername" --password="password" --filesystem=none -k "" --protect-hidden=no --non-interactive

If the user should type in the password a user interaction is necessary.
2.b
Container entschlüsseln mit keyfile:
truecrypt "containername" --filesystem=none -k "keyfile" --protect-hidden=no --non-interactive

If the key-file is protected with an passphrase a user interaction is necessary.

3
Find the decrypted container.:

truecrypt –l

1: /path/containername /dev/mapper/truecrypt1

4
Create a filesystem in the container:

mkfs.ntfs /dev/mapper/truecrypt1

5
Mount the container:

mount /dev/mapper/truecrypt1 /mountpoint

6
Copy files into the container:

cp/rsync/mv/scp /source /mountpoint

7
Unmount the container:

umount /mountpoint

truecrypt -d "containername"

8
Open an existing container:

See points “2.a/b”, “6” and “7”.

�I think we could already extract some more requirements from the „Architecture discussion paper“ of the last consortium meeting.

�Please extend description how encryption is interacting with SES/SecurityVM

Also: do we allow other encryption methods than true crypt? Modular approach?

20 | Page

_2147483647.vsd
�

