Project: OpenSecurity

Architecture

	Document Control Page

	Creator
	AIT

	Editor
	Mihai Bartha

	Subject
	OpenSecurity - Architecture

PSP 1.3.3 Deliverable “Designbericht”

	Meeting date(s)
	

	Meeting location
	

	Publisher
	OpenSecurity consortium

	Type
	Text

	Format
	Application/msword

	Language 
	EN-GB

	Creation date
	2013-01-07

	Rights 
	© Copyright “OpenSecurity consortium”.

	Audience
	 internal

	Review status
	 Draft

 FORMCHECKBOX 
 Final



	Action requested
	 FORMCHECKBOX 
 to be checked by Partners




	Revision history

	Version
	Date
	Modified by
	Comments

	0.1
	2013-04-12
	Mihai Bartha
	Initial version

	0.2
	2013-04-19
	Jürgen Eckel
	Extended Chapter 3.1

	0.3
	2013-04-22
	Mihai Bartha
	Integrated section 3.2

	0.4
	2013-05-27
	Frank Treichl
	Translating and modifications on 2.1.1, 2.1.2 and 6.1.1

	0.5
	2013-07-23
	Mihai Bartha
	Restructured section 3. Addressed comments from WEi. Added section 3.2.2, 3.3, 3.6.2 and 3.4.2. Changed template.

	0.6
	2013-08-08
	Mihai Bartha
	Restructured document, minor corrections and additions

	0.7
	2013-08-14
	Mihai Bartha
	Addressed comments from OMa.


Table of contents

61
Introduction

2
Architecture
7
2.1
Use Cases
8
2.1.1
Interaction with Removable Storage Devices
8
2.1.2
Joining the Safe Network
9
2.1.3
Safe Internet Access
9
2.2
Interaction with Removable Storage Devices
9
2.2.1
Local QubesOS based import/export of encrypted data
10
2.2.2
Local Native OS based import/export of encrypted data
11
2.2.3
Server based import/export of encrypted data
12
2.3
SecurityVM Template Management and Update
14
2.4
Joining the Safe Network
14
2.5
Safe Internet Access
16
3
Implementation guidelines
18
3.1
Workflow “Interaction with Removable Storage Devices”
19
3.1.1
Export Encrypted Data
19
3.1.2
Import Encrypted Data
20
3.1.3
Data Import/Export using CIFS-Hooks and TrueCrypt Container
21
3.2
Antivirus Tools and Usage Patterns
22
3.3
Cryptographic Algorithms and Services
25
3.3.1
Standard TrueCrypt workflow
25
3.3.2
Integration into the OpenSecurity layer
26
3.3.3
Problems in this solution
27
4
Annexes
28
4.1
Encryption and Decryption
28



1 Introduction
This document aims at providing the architecture based on the requirements identified in AP2 and documented in the “Requirements specification” document. One of the main challenges of the OpenSecurity project is enabling the users, currently restricted to a closed and secure local network, to work with external resources.

Two main topics will be addressed within the scope of the OpenSecurity project. In the first year of the project the interaction with Removable Storage Devices (RSD) will be addressed. The second part of the project will address the interaction with external network resources (WWW) and mobile workstations (e.g. Laptops). Security of mobile devices (Smart-Phones, Tablets, etc.) is outside the scope of the project as these devices use a plethora of proprietary software and operating systems and no generic solution can be implemented at the current state of understanding and feasibility assumptions.
2 Architecture
From the OpenSecurity perspective two main security zones can be identified and will be referred to throughout the present document.

[image: image1.jpg] 
Figure 1 - Network Topology

Safe Network (SN) is the corporate network of the demand carrier. The user’s interaction is currently limited to this network because of the sensible nature of the information and data he is dealing with. The SN is considered to be a trusted and secure through isolation from the outside world. Because of the sensible nature of the information (data), there are very strict access restrictions to external resources. Figure 1 - Network Topology depicts an overly simplified network topology.

Securing the interaction with unsafe resources (RSDs and internet) can be brought down to several main challenges.

1. Mediate and orchestrate the interaction with unsafe resources.

2. Protect the Safe Network from malware.
3. Protect sensible information from theft or accidental loss of portable devices.

The main design decision is based on the concept of “Security by Isolation” in combination with virtualization technologies in order for a better enforcement of security rules and process boundaries. This results ultimately in an overall security of higher quality and resilience. 

From a virtualization technology standpoint bare-metal or user-space virtualization solutions can be used. The OpenSecurity project aims at providing a generic Virtual Machine (VM) orchestration layer that can be easily extensible to support further virtualization solutions.

XEN based bare-metal hypervisors are the underlying framework for our implementation. More specifically, QubesOS (XEN/Fedora based hypervisor) already implements the concept of “Security by Isolation” and will be used for systems where such an installation is feasible. At the same time, scenarios exist where installation of bare-metal hypervisors is not feasible and instead, a user-space virtualisation solution will be deployed on top of a natively installed operating system like VirtualBox on top of Windows operating system.

In the context of virtualization these instances are defined as a minimum:

· Administrative OS: this is the operating system VM instance, which manages the machine. On XEN based solutions this is “Dom0”. In user space driven solutions with VirtualBox or VMWare this is the operating system which spawns and controls the VM instances. 

· Working VM or App VM: this is the primary operating system of the user. This is the place the user edits documents and surfs the Internet. Note, there can be more than one working VM each dedicated to a specific user task and security level e.g. Office, Internet Browsing, Media, etc.

· Security VM: this denotes to the VM enforcing the OpenSecurity ideas and providing anti-virus and encryption functionalities.

· Auxiliary VM or Service VM: these are instances which are not meant to directly fulfil any user task but rather help to isolate security relevant services like network connection, firewall, network name resolution, etc.

In the following subsections the use-cases are presented and the architecture in terms of interactions between the individual subsystems.

2.1 Use Cases
2.1.1 Interaction with Removable Storage Devices
The user wants to access a file, residing on an external storage device (e.g. USB memory stick), modify it using a computer within the Safe Network and save it. The target storage can be a removable storage device or to a local network share.

The file may or may not contain sensible information. Considering the first certain files or the entire content of the storage device might be encrypted and the user shall be able to provide the necessary encryption key/token. 

At the same time the storage device could contain harmful code that should be identified and if possible removed or the containing files quarantined.

The user might choose to encrypt his data upon saving (exporting) to an external storage device. 

2.1.2 Joining the Safe Network
After working outside the institutional boundaries (connected to untrusted networks) and being exposed to various threats, the user’s Laptop eventually re-joins the Safe Network. Due to the high risk of external networks the machine is assumed to be compromised and needs to be malware checked and declared secure prior to allowing access to the Safe Network.

Hence, the user's machine might then be infected with high sophisticated malware designed for the current environment running with administrator's privileges capable of exploiting specific on-site vulnerabilities. The goal of this project is to even handle such incidences and hinder malware dissemination into the SN.

2.1.3 Safe Internet Access
The user wants to retrieve a resource from the Unsafe Network and process it on the Safe Network. The user has to be able to use a web browser in order to locate, download, store or copy the resource to the clipboard. This interaction poses several security risks and needs to be mediated in order to protect the Safe Network. The chosen solution for this use-case makes use of virtualization, and network separation between specific virtual machines dedicated for safe and unsafe resource interactions.

2.2 Interaction with Removable Storage Devices
Interaction with removable storage poses serious security risks through automatic or manual execution of malware code residing on such devices. Usage of Anti-Virus software to scan removable storage will only detect malware for which a signature or definition exists. Certain attack vectors might even exploit the USB mass storage device driver within the operating system. One of the main design goals is to prevent the malware from spreading within the Safe Network and eliminate the damage caused by undetected malware. This can be accomplished by mediating the interaction with removable storage through a virtualization layer running on the local machine. This means that the Administrative OS will not have direct access to the storage device and instead SecurityVM guests will mediate the interaction. 

Two fundamental configurations are envisaged based on the deployment choice of the institution. The following subsections describes the components and interactions for systems making use of 1) QubesOS bare metal hypervisor and 2) user-space virtualization on top of native operating system (Windows/VirtualBox).

Although dependent of the virtualization technology the VM image format might vary, all SecurityVM instances presented in the following sections are based on a Linux OS distribution and implement the following common functionality:


USB device sharing over TCPIP tunnel


Malware detection and removal


Automatic update


Cryptographic services


Interface for file import/export GUI

2.2.1 Local QubesOS based import/export of encrypted data
Upon connection of a removable storage device to a workstation running QubesOS the storage device is detected by the storage domain. The administration domain (Dom0 VM) can intercept this event and trigger the necessary actions for enabling file import. 

At first a new Security VM is instantiated from a purpose built VM template, that has the role of scanning the removable storage for malware and provides the software interfaces that enable the user to choose and decrypt the files he/she wants to import.

[image: image2.jpg]
Figure 2 - Import Encrypted Data

Upon connection Dom0 attaches (binds) the storage device to the newly created SecurityVM and initiates the virus scanning (1). Upon completion it publishes the SecurityVM reference to the users AppVMs (2). 

At this point the user can query the contents of the storage device from the SecurityVM and choose to import specific files (3). In case of encrypted archive files the user has to provide the key so that SecurityVM can decrypt and malware scan the contents. The selected files are copied to a network share (e.g. NFS) and exposed to the other VMs. Dom0 enables network access to the SecurityVM share and the user can retrieve the data (4). 

The user can choose to release the storage device, upon which all encrypted archived are closed, the NFS share released, and the SecurityVM destroyed.

Exporting encrypted data can be described as an extension to the import. By making use of the share functionality it is possible to write files to the SecurityVM shared folder. These files are scanned and written back to the storage device on demand or upon device release. Upon export the files can be encrypted and the user can select the encryption algorithm of his choice and generate or provide the encryption token. The encryption algorithm used for export can be a different one then the one used for importing the document.
For the purpose of traceability of sensitive data, logging of the user interaction with the import/export subsystem shall be employed as necessary.

2.2.2 Local Native OS based import/export of encrypted data
Deployment of QubesOS to mobile workstations is not always feasible. Reasons for this are manifold: older mobile workstations have limited resources; deployment on a large number of existing mobile workstations within an institution might not be cost effective; need for personnel training;

[image: image3.jpg]
Figure 3 – Native OS Import Export
Similarly to the section 2.2.1, where QubesOS was used as a virtualization layer to enable execution of the SecurityVM, the following describes the architecture for a solution based on user-space virtualization on top of the Administrative OS (e.g. VirtualBox virtualizer running on Windows).

In order to prevent execution of malware, upon USB removable storage connection the Adminstrative OS shall not load the mass storage device driver and auto-mount the device. This can be prohibited by configuration or removal of the driver. Further on the Administrative OS shall trigger the instantiation/start of a SecurityVM instance and USB device attachment to the newly created VM (1). Upon attachment the SecurityVM loads its own mass storage device driver and executes the virus scanning component.

The implementation of the SecurityVM provides a user interface (possibly web interface) that the user can connect to, browse the contents and control various aspects of the import/export workflow (e.g. provide encryption tokens, choose encryption algorithms) (2). The SecurityVM provides a share used for exchanging the data with the import/export subsystem.
2.2.3 Server based import/export of encrypted data
When connected to the local safe network a dedicated Security Server can take over the scanning and import/export of data from locally connected removable storage devices. 

[image: image4.jpg]
Figure 4 - Remote scanning

By connecting a RSD to a workstation the USB device is attached to a SecurityVM instance running on top of a local virtualization layer. While connected to the Safe Network the user has the possibility to choose between a local and remote import/export (see sections 2.2.1 and 2.2.2 for local import). By choosing remote scanning the local SecurityVM exposes the device to the SecurityServer for scanning.
The SecurityServer is server and infrastructure within the Safe Network providing encryption and antivirus services through virtualization and SecurityVM instances as in the case of local import/export. Its designed goal is that of speeding up import/export and reducing resource usage on the client (workstation) side. It is scalable in terms of number of SecurityVM instances and resources assigned per SecurityVM.
The SecurityServer is notified about the existence of the new device (1). Following the SecurityServer instantiates and instructs new SecurityVM instance to connect to and scan the contents of the RSD (2). Upon successful scan the user can select the files that shall be imported (3). It does so by making use of a client user interface and interfaces provided by the SecurityVM. In order to enable the import, the SecurityVM requests the necessary keys in order to enable the scanning of the encrypted files. Upon import completion the imported files are exposed through a network share, and can be retrieved by the client (4).
In a similar manner to import, export is realized by making use of the client component for selecting the file and encryption token. After successful scanning the file is encrypted and copied to the removable storage. The SecurityVM will support the client in providing the encryption token and selecting the encryption algorithm.

Exposing a RSD over a network between SecurityVMs can be achieved through software providing a TCP/IP tunnel for the USB protocol. The USBIP project provides such an implementation through dedicated device drivers and client/daemon components. The USBIP device drivers are designed to work with a wide range of USB devices.
2.3 SecurityVM Template Management and Update
One of the main architectural features is the use of the SecurityVM in order to enforce protect and mediate the data exchange. Such VMs have to meet several high level requirements in order to allow for a fast and productive interaction with the system:

1. instantiation and startup time shall not produce significant interruption in the users-workflow

2. VM shall be disposable (evtl. disposing policy customising)

3. Automatic VM update shall be possible.

The technical solutions for meeting these requirements differ depending on the virtualization technology. One of the simplest forms of instantiation is VM cloning. This process effectively duplicates the VM filesystem images and requires additional configuration to avoid conflicts between instances originating from the same source VM. Cloning is possible under most virtualization solutions. vmWare and QubesOS allow for template based VM instantiation, meaning that a new instance is created based on a configuration file (template). Dependent on the used technology the fastest supported method shall be used in order to reduce the creation time.

Within the OpenSecurity framework it shall be possible to add support for additional virtualization technologies and implement the functionality for instantiation, startup, update and disposal of VMs as well as its own VM template subsystem and VM management. The feasibility of providing an abstraction layer at this level has yet to be further evaluated.
While short VM startup times are important for on demand VM creation scenarios, OpenSecurity shall implement a VM management layer, including definable policies for in advance (a-priori) creation and startup of Security VMs.
2.4 Joining the Safe Network
The laptops of users working part time outside of institutional boundaries and joining public (unsecure) networks can become compromised and pose threat to the network security. Thus such systems have to be malware scanned and updated upon re-joining the home network and accessing sensible content from the network shares.
The following describes a generic, virtualization technology independent, solution in terms of interactions between VMs.
[image: image5.jpg]
Figure 5 - Self Scanning and Update

Upon re-joining the safe network the security anti-virus definitions on the mobile workstation have to be updated prior to executing a full system scan (Administrative VM and all virtual guests). Upon connection to the institutional network the networking subsystem serving the Administrative VM running on the mobile workstation is assigned an IP address in a subnet where only access to the SecurityServer is provided. Consequently the full system scan is triggered. The AdministrativeVM starts the SecurityVM template (1) and initiates its update. The SecurityVM template updates itself based on the definitions received from the SecurityServer(2).

Upon successful SecurityVM update, the AdministrativeVM creates a new SecurityVM instance and instructs the AppVMs to share their private content.in order to be scanned (4). Private content is typically on Windows machines the “My Documents” folder on a dedicated partition, a TrueCrypt container or /home folder on a Linux based VM. Storing private data in a TrueCrypt container is recommended as it protects data in the case the portable workstation is lost or stolen and it enables read only access to the data while scanning it with a SecurityVM (read-write).

Inter-VM filesystem sharing can be accomplished by using a Network Filesystem (NFS) server and client. On some virtualization solutions the AdministrativeVM has access to the private data of the AppVMs in the form of image files and it is possible to expose these to the SecurityVM for scanning in form of loopback devices. By using this method no memory scanning is possible as the AppVM has to be shut down.

After scanning the results are sent by netVM/firewallVM to the SecurityServer where the decision for allowing access to the safe network and network shares is taken (6). Upon completion Dom0 can choose to destroy the SecurityVM instance.

One further possible solution for this use-case would employ two parallel operating systems on the same machine, one of them used for working within the Safe Network while the other one for the Unsafe Network. This solution has to ensure the isolation of the two operating systems (e.g. through file-system encryption) while at the same time to only allow the execution of either operating system when connected to its designated network.

The total isolation of the two operating systems is very hard to achieve and does not provide enough protection against “Evil maid” attacks. At the same time because the unsafe operating system has total ownership of the system during runtime reasonable security enforcement is very limited. The unsafe operating system is able to install it's own malformed boot loader tricking the user in unlocking the real safe operating system on next boot while keylogging any actions. In such scenarios security is totally compromised.

2.5 Safe Internet Access
The solution for providing security while enabling users with safe access to network resources cannot be a pure technological one. The security threats in this interaction are manifold and the system might be compromised by the plethora of malware and attacks one is exposed to when connected to and interacting with an untrusted network (typically internet).

The main goal is to secure the data and information the user is working with from unwanted access and modification. While anti-malware software is a good prevention mechanism it does not protect from zero-day threats. As in the case of interaction with RSDs we make use of the concept of “security by isolation” and implement it using disposable virtual machines. So even if undetected, the malware’s execution environment is that of an inhospitable virtual system with limited resources and capabilities where any changes are lost upon VM restart.

These enabling technologies require minimal user training and provide a high level of security requiring the user to follow predefined guidelines when interacting with the system. They do not protect the system and user data from accidental or intentional user misuse.

[image: image6.jpg]
Figure 6 - Safe Internet Access

As in the case of interaction with RSDs the user shall make use of a dedicated SecurityVM for browsing network resources by preinstalled software components. A new SecurityVM shall be instantiated on demand and interaction shall be possible through a remote connection. The software solution for the remote connection is platform dependent and controlled by a VM management layer on the host platform. File transfer and clipboard (copy/paste) functionality is to be treated similarly to the RSD import/export functionality described in chapter 2.2.

3 Implementation guidelines
This section aims at providing a short summary on the preliminary OpenSecurity implementation decisions and used technologies.

Independent of whether the OpenSecurity system (see Figure 7 - Implementation Guidelines is installed on a workstation or server the commons are the existence of a virtualization layer and one or more Security Virtual Machine (SVM) instances.

[image: image7.jpg]
Figure 7 - Implementation Guidelines

QubesOS provides a VM management layer on top of the virtualization layer providing VM template management, creation, update and disposal of VM instances. It is implemented in the form of a Python and compiled code framework that controls the XEN hypervisor and can easily be extended. The functionality for managing interaction with RSDs and SVM orchestration has to be implemented within the scope of the project. The user-space virtualization solutions (VirtualBox, vmWare) also provide a much simpler management layer that has to be extended. Management of SVMs and interaction with RSDs will be achieved by introducing a virtualization abstraction layer (by implementing virtualization specific adapters) in order to allow for generic interaction with the virtualization layer. The implementation will be in the form of a framework of Python scripts and C++ / Boost binaries.

Similarly within the SVM beside TrueCrypt and Ikarus Antivirus engine there are many other alternatives that one might consider using. Although we will only provide support for the two abovementioned ones an abstraction layer shall be implemented at this level in the form of a framework implemented in Python/C++. 

User interaction with the SVM can be achieved through a secure shell (SSH) connection and a graphical frontend (GUI). The user interface should be able to execute within the administrative domain (Xen DOM0 / Native OS) or from a VM. Thus the requirement for portable code and UI toolkit and. Java is one possibility although it does not always integrate well into the user’s desktop design. Further languages and toolkits will be evaluated.
Access to SecureVMs and file transfer can be achieved by making use of existing SSH utilities for copy (scp), secure file transfer protocol (sftp) and secure shell file system mounts (sshfs). Windows based implementations of sshfs utilities have to be evaluated in regard to interoperability with various filesystem types.
SSH authentication methods are either password prompts for the user or public key authentication. For the later, the private key is stored on disk and this is as safe as the disk and the containing VM is. Methods for securing the public key have to be further investigated.

3.1 Workflow “Interaction with Removable Storage Devices”
The following subsections describe the main workflows and user-system interactions for the removable storage import/export functionality.
3.1.1 Export Encrypted Data
1. User tries to export Data. 

2. User connects removable storage (e.g. USB memory stick) to the computer. 

3. User starts OpenSecurity client. 

4. User selects “data export” in the client. 

5. User selects the data to export. 

6. User selects the destination for the export. 

7. User enters his password or gives his key-file to the client. 

8. User clicks on “start export”. 

9. Data will be transferred to local Security VM/server. 

10. Data will be scanned for malware (e.g. virus, worm, Trojan horse). 

11. Data will be encrypted on the Security VM/server.

12. Data will be encrypted. See “Encryption and Decryption”.  

12.1. If occurring, error messages have to be delivered to the user. 

13. Anti virus VM/server write encrypted data direct to the storage.

14. User gets a success message from the OpenSecurity client. 

[image: image8.png]
Figure 8 - Export Encrypted Data

3.1.2 Import Encrypted Data
1. User connects removable storage (e.g. USB memory stick) to the computer. 

2. User starts the OpenSecurity client. 

3. User selects “import Data”. 

4. User selects data. User selects the destination for the import.

5. System decides if data is encrypted (white list).

6. User enters his password or gives his key-file to the client if the data is encrypted. 

7. User clicks on “start import”. 

8. Encrypted container or plain data will be transferred to the Security VM/server

9. If data is an encrypted container, the system (Security VM/server) will decrypt it. See “Encryption and Decryption”.

9.1. If occurring, error messages have to be delivered to the user. 

10. Data will be scanned for malware (e.g. virus, worm, Trojan horse). Security VM/server writes encrypted data directly to the local storage.

11. User gets a success message from the OpenSecurity client.

[image: image9.png]
Figure 9 - Import Encrypted Data

3.1.3 Data Import/Export using CIFS-Hooks and TrueCrypt Container
Another scenario involves CIFS-Hooks in the SecurityVM to be as less intrusive as possible for the user. This also enforces encryption on RSD

1. The user inserts a RSD into the machine, e.g. an USB stick.

2. The SecurityVM notices the insertion and mounts the RDS.

3. The SecurityVM checks if a TrueCrypt container is present on the device and mounts the medium.

3.1 If no TrueCrypt container is present, the SecurityVM asks the user if it should turn the RDS into a TrueCrypt container and a password from the user to do so.

3.2. If the user aborts the action, the RDS is not mounted. Stop.

3.3. The SecurityVM turns the data available on the RDS into a TrueCrypt container and mounts the RDS.

3.4. If mounting of the TrueCrypt container fails, the user is noticed; unable to proceed. Stop.

4. The SecurityVM mirrors the file table of the RDS as a new CIFS/Samba/SMB share.

5. The User's Application VM notices the appearance of a new “network share” labelled with the RDS name (e.g. “USB Stick”) and mounts this new network share.

6. Any read/write access on the newly CIFS/Samba/SMB share is intercepted on the SecurityVM which checks for any other tasks related to security policies like anti-virus checking, additional encryption, … on the specific files.

This approach does not need any additional instalments but the password prompt and the possibility to show warning and error messages on the user's application VM and should run right out-of-the-box on Windows, Apple Mac and Linux application VMs. It also enforces encryption of RDS.

Further, this idea integrates seamless operations since file selection, copying, deletion and creation is done by the user within his “natural” environment or applications like Windows Explorer or Mac Finder. 

However the technical feasibility of this approach is still matter of research.

3.2 Antivirus Tools and Usage Patterns
We’ve discussed several possibilities concerning the integration of malware identification within the proposed framework. The generic approach has been outlined above and contains a SecurityVM within a modular server structure. The SecurityVM is able to identify malware with help of scan server modules.
The scan server module can be integrated as a central instance behind a load balancer or be located within a client based virtual environment. Having that the access and the data flow to and from the scan server/s can be strictly managed and secured. The locations of the storage used for import/export and file share are independent from the location of the scan server.

The basic data flow looks like this:

[image: image10.jpg] 
Figure 10 - Basic Workflow

This scenario can be in any environment. The following non-complete matrix shows the most likely combinations.
	Import/export storage
	Scan Server
	FileShare

	Local
	Local
	Local

	Local
	Central (network)
	Local

	Central (network)
	Local
	Central (network)

	Central (network)
	Central (network)
	Central (network)


Table 1
The scan server itself comes along with a RESTful API and can thus be located within any environment. The comparison between the local or the central integrated scan server can be simplified by the inspection of certain features and possibilities. The following paragraphs will first introduce the characteristics. Thereafter a direct comparison will be listed.
· Scalability
A locally installed scan server can of course be duplicated but will in any case consume limited resources. The central approach could integrate a load balancer and set up additional servers. Hence, the central service can be adjusted and extended more easily.
· Maintenance/Integration
The local integration comes along with a more complex integration for each client. The administrative work to be done is thus much more complex and time consuming.
· Network load
The network load is of course minimized by the local integration.
· Virus DB/Engine Updating
The updating process can be managed and maintained more easily in the central approach. The supervision is also much easier in this case.
· Mobility
The local integration enables mobile devices to be disconnected from the company network and could assure a certain security in case of mobile activities without having access to the institutions network.

The usage and integration requirements will actually decide the integration approach. The free configurability of the infrastructure (Table 1) together with the RESTFUL scan server API as well as the pros and cons for certain attributes enables the framework to be rather flexible in terms of integration. 

This insight enables the design of a system with a central scan server for usual workstations and mobile devices per default. In addition mobile devices come along with a local scan server integrated which is only activated in case the mobile device is not connected to the company network. This would enable a more secure working environment during traveling. Of course a final check or verification of the central scan server has to be performed before the data is integrated to central storage system.

3.3 Cryptographic Algorithms and Services
If company data leaves the house on a mobile device like an USB stick or a laptop, encryption is a must have. The device can be lost or stolen and after such an event the documents on it should not get revealed to public or to a competitor. Also if data is transferred from one company to another or between branch offices privacy of the transferred data should be ensured.

Other problems come up when encrypted data should be imported to the institutional Safe Network. The data can contain malware, but the anti virus software cannot check encrypted data. So the import workflow has to include a detection and decryption – if possible – of encrypted data prior to the virus-checking phase. If the data can be decrypted and is free of viruses and malware it can be imported to the Safe Network.

Based on these requirements and the needs from the demand carriers we searched for and evaluated possible solutions. In general, there are not much alternatives for encryption systems fulfilling the given requirements: The user requests for an easy usable and secure system that is compatible in a wide range. This means it should be possible to create, open and update encrypted files with different operating systems (e.g. Windows, Linux, MacOS).

The only system independent and widely used software for such purposes is TrueCrypt. TrueCrypt uses encrypted containers for saving files into it. It also provides different encryption and hash algorithms that can be combined in several ways. 

3.3.1 Standard TrueCrypt workflow
The standard usage of TrueCrypt is explained in the next steps:

At first an encrypted container has to be created (1). At creation time the user can choose the size of the container, the used encryption and hash algorithms. Most used combination is AES as encryption algorithm and RIPEMD-160 as hash algorithm. After that the user has to choose a password or a keyfile to protect the data. The last step of the creation process is to choose a filesystem like FAT, NTFS or ext4 for the container. For RDS the lowest common denominator is FAT32 as it is supported by most operating systems.

The next step would be to mount the container and fill it with data (2). For this, the user has to type in his password or use his keyfile to decrypt the container. The TrueCrypt device driver hides the complete encryption/decryption process and the user will only see an extra disk on his system. 

[image: image11.png]
Figure 11 - TrueCrypt workflow

The user can use this disk like any other drive on his system to open or save data on it. The files get de-/encrypted on the fly (3).

At last the container gets unmounted from the system (4). The user can now save the container to a memory stick or any other portable device. If the device gets lost or is stolen the documents in the container stay encrypted and hidden. Thus they cannot be used or revealed.

To use an already encrypted container its only necessary to redo the steps 2 through 4.

3.3.2 Integration into the OpenSecurity layer
In the OpenSecurity system this steps are nearly the same, but get executed automatically by a virtual machine. The only needed user interactions would be to select the data and provide the password or keyfile for de-/encryption.

A user interface for interaction with the SecurityVM’s shall be implemented that allows for the orchestration of the import/export and encryption backend. The SecurityVM implements the backend in form of an easily extensible series of components (scripts or compiled code) that are accessible from the virtualizer or other VMs through a Secure Shell daemon.

As an initial implementation the system will make use of the TrueCrypt encryption component. A modular approach shall be used to enable easy extension by other end-user specific solutions and encryption algorithms. This requires the backend components to implement an abstraction layer and generic interfaces effectively hiding the complexity and inner workings of encryption engines, key management and file sharing. 

The network traffic to and from the SecurityVM shall be filtered (limited to specific ports and sub-networks) in order to ensure that undetected malware cannot escape the boundaries of the SecurityVM and compromise the rest of the system.

3.3.3 Problems in this solution
As mentioned above in Section 3.3 all files that get imported must be checked if they are encrypted. If a file is encrypted it has to go through the decryption workflow and after that the encrypted data has to be scanned for malware.

Because of the nature of encryption, encrypted files look like absolute random data. It is very hard to recognize if a file is encrypted or if the file is only filled with random bytes. It's only possible to test with a heuristic method if the file has a high probability to be an encrypted file or container.

One of the ways to solve this issue is a whitelist. Only definitely known files – like text documents or images – can pass the whitelist. Encrypted files will be checked for predefined headers by a heuristic method like mentioned above. If they pass the whitelist filter the decryption routines can handle them else some extra actions have to be done.
All other files are not imported at all or are quarantined and have to be checked by a supervisor.

This approach suffers from a series of drawbacks:

· Good encryption results in high entropy. Some cypher algorithms and variants are standardized but some may be proprietary. There are cypher format file containers but every application is free define its own. This makes it very hard to find a good heuristic for whitelist decisions.

· Whitelist algorithms have to update since file formats come and go. And as the whitelist approach is very stochastic in nature, improvements have to be deployed on remote machines, which is an administrative challenge on its own.

· According to the problematic mentioned above false positive assessments will occur. To mitigate blockage of users the system has to provide an option to hand-out the file unchecked. As password prompts are annoying this might become the standard way in handling encrypted files: click away the password prompt, rendering the primary idea useless.

· Any file may be turned into known files formats to avoid whitelist decryption checks. Candidates are ASCII Base64 files or image files (PNG, JPG, …).

· Automatic decryption checking may be vulnerable to zip bomb attacks consuming vast amount of resources resulting in an easy to achieve denial of service.

· Authorized users dealing with encrypted files may not know the password to open it. Backup operators do not need to actually open files in order to archive them.

Another way to solve this is using remote verification with PKI (Public Key Infrastructure): any file may have an accompanying signature file in the very same folder, e.g. “BudgetPlan.doc” and “BudgetPlan.doc.verified”. The latter is a very small file holding the checksum (SHA256) of the master file (“BudgetPlan.doc”), the file size, the date of the anti-virus check, the machine or host id of the server which performed the check and the check result. All these data particles are hashed and digitally signed with the private key of the anti-virus check service.

The client machine itself has a list of known anti-virus check services and their corresponding public keys. On encountering a file the system searches for the accompanying verification file. When found the client calculates if the hashed data particles of the local file do match the signature of the anti-virus service. If it does, the client knows that the files has been verified already and does not need any further action. This is very fast and no anti-virus implementation or heuristic is needed on the client side.

Creating verification files can be achieved as a company wide web service: upload a file via https, provide credentials to open the file and download the digitally signed verification file from the central anti-virus check server. This imposes very little know how and training on the user side and the central anti-virus service is more easy to keep up-to-date. In a very rigid scenario the OpenSecurity system may strongly insist in having a valid verification check file before handing out the master file. This may apply when the verification file is invalid or missing.

4 | Page

[image: image12.png]