Project: OpenSecurity

Virtualization – State of the Art
	Document Control Page

	Creator
	AIT

	Editor
	Mihai Bartha

	Subject
	Virtualization – State of the Art

	Meeting date(s)
	

	Meeting location
	

	Publisher
	OpenSecurity consortium

	Type
	Text

	Format
	Application/msword

	Language
	EN-GB

	Creation date
	2013-01-07

	Rights
	© Copyright “OpenSecurity consortium”.

	Audience
	 FORMCHECKBOX
 internal

	Review status
	 FORMCHECKBOX
 Draft

 FORMCHECKBOX
 Final

	Action requested
	 FORMCHECKBOX
 to be checked by Partners present at the meeting

	Revision history

	Version
	Date
	Modified by
	Comments

	0.1
	2013-01-07
	Mihai Bartha
	Initial version – high level description

	0.2
	2013-
	Mihai Bartha
	Extended section 2.1.2

	
	
	
	

Table of contents
51
Introduction

2
QubesOS Virtualization
5
2.1
Architecture
5
2.1.2
QubeOS HowTo’s
6
2.2
XEN
14
2.3
Assessment
15
2.4
Introduction
15
2.4.1
Network topology
15
2.4.2
QubesOS on workstation
16
2.4.3
QubesOS on server
17
3
Other Technologies
19
3.1
USB/IP
19
3.1.1
Introduction
19
3.1.2
Architecture
19
3.1.3
Usage
20
3.2
Bromium
23
3.2.1
Bromium micro-virtualization: trustworthy systems by design
23
3.2.2
Micro-virtualization in Action
24
3.2.3
Blocking advanced persistent threats
24
3.2.4
Protection of Sensitive Applications
24
3.2.5
Data loss prevention
25
3.2.6
Desktop virtualization done right
25
3.2.7
PC configuration & lifecycle management
25
3.2.8
Onward, toward trustworthy computing!
26
3.3
Inter-VM Messaging
26
3.3.1
Introduction
26
3.3.2
Java Message Service (JMS)
26
3.3.3
Apache Message Queue (ApacheMQ)
26
4
Anti-Malware
28
5
Cryptography
28
6
Ideas
28
6.1
Software Choice
28

1 Introduction
This document aims at providing a preliminary architecture, identifying the usage scenarios, identifying simple requirements and serve as a basis for discussion.

2 QubesOS Virtualization

Architecture

http://qubes-os.org/trac/wiki/QubesArchitecture

Qubes implements Security by Isolation approach. To do this, Qubes utilizes virtualization technology, to be able to isolate various programs from each other, and even sandbox many system-level components, like networking or storage subsystem, so that their compromise don’t affect the integrity of the rest of the system.

Qubes lets the user define many security domains implemented as lightweight Virtual Machines (VMs), or “AppVMs”. E.g. user can have “personal”, “work”, “shopping”, “bank”, and “random” AppVMs and can use the applications from within those VMs just like if they were executing on the local machine, but at the same time they are well isolated from each other. Qubes supports secure copy-and-paste and file sharing between the AppVMs, of course.

(Note: In the diagram above, the "Storage Domain" is actually a USB Domain)

Key Architecture features

· Based on a secure bare-metal hypervisor (Xen)

· Networking code sand-boxed in an unprivileged VM (using IOMMU/VT-d)

· USB stacks and drivers sand-boxed in an unprivileged VM (currently experimental feature)

· No networking code in the privileged domain (dom0)

· All user applications run in “AppVMs”, lightweight VMs based on Linux

· Centralized updates of all AppVMs based on the same template

· Qubes GUI virtualization presents applications like if they were running locally

· Qubes GUI provides isolation between apps sharing the same desktop

· Secure system boot based (optional)

QubeOS HowTo’s
USB Device Assignment and Removal

http://qubes-os.org/trac/wiki/StickMounting
In Qubes Beta 3 a new tool, qvm-block has been introduced that makes mounting USB devices to any user AppVM very easy, no matter which actual VM is handling the USB controller (those can be assigned using the qvm-pci command).

In order to assign a USB disk to a VM, follow these steps:

1. Insert your USB stick.

2. In Dom0 konsole (running as normal user) do:

qvm-block -l

This will list available block devices connected to any USB controller in your system, no matter in which VM this controller is hosted. The name of the VM hosting the USB controller is displayed before the colon in the device name. The string after the colon is the name of the device used within the VM.

NOTE: If your device is not listed here, you can refresh the list calling (from VM to which device is connected):

sudo udevadm trigger --action=change

3. Connect the device, e.g.:

qvm-block -a personal dom0:sda

NOTE: We have changed order of parameters in 1.0-rc1

This will attach the device as "/dev/xvdi" in VM.

4. Open Nautilus file manager in the AppVM. Your stick should be visible in the "Places" panel on the left. Just click on the device.

5. When you finish using your USB stick, right-click its icon in Dolphin and chose "Safely Remove <Your stick name>".

6. Back to Dom0 konsole -- in order to unmount the stick do the following:

qvm-block -d <device> <vmname>

6. You can remove the device.

In the next release this will get integrated into the Qubes GUI manager.

Windows HVM installation

HVM domains (Hardware VM), in contrast to PV domains (Paravirtualized domains), allow to create domains based on any OS, if one only has its installation ISO. E.g. this allows to have Windows-based VMs in Qubes.

First, lets create a new HVM domain (use the --hvm switch to qvm-create, or choose HVM type in the Qubes Manager VM creation dialog box):

qvm-create win7 --hvm --label green

(Of course, the name of the domain ("win7"), as well as it's label ("green"), are just exemplary).

Now, we need to install an OS inside this VM, this can done by attaching an installation ISO upon starting the VM (this currently can be done only from command line, but in the future we surely will added an option to do this also from the manager):

qvm-start win7 --cdrom=/usr/local/iso/win7_en.iso

The command above assumes the installation ISO was somehow transferred to Dom0, e.g. copied using dd command from an installation CDROM. If one wishes to use the actual physical media without copying it first to a file, then one can just pass /dev/cdrom as an argument to --cdrom:
qvm-start win7 --cdrom=/dev/cdrom

Now, the VM will start booting from the attached CDROM device, which in the example above just happens to be the Windows 7 installation disk. Depending on the OS that is being installed in the VM, one might be required to start the VM several times (as is the case e.g. with Windows 7 installation), because whenever the installer wants to "reboot the system", it actually shutdowns the VM (and Qubes won't automatically start it), so several invocations of qvm-start command (as shown above) might be needed.

Sometimes one wants to download the installation ISO from the Web and use it for HVM creation. However, for security reasons, networking is disabled for Qubes Dom0, which makes it not possible to download an ISO within Dom0. Also Qubes do not provide any (easy to use) mechanisms for copying files between AppVMs and Dom0, and generally tries to discourage such actions. So, it would be inconvenient to require that the installation ISO for an HVM domain be always located in Dom0. And the good news is that this is indeed not required -- one can use the following syntax when specifying the location of /usr/local/iso/win7_en.iso the installation ISO:

--cdrom=[appvm]:[/path/to/iso/within/appvm]

Assuming e.g. the an installation ISO named ubuntu-12.10-desktop-i386.iso has been downloaded in work-web AppVM, and located within /home/user/Downloads directory within this AppVM, one can immediately create a new HVM and use this ISO as an installation media with the following command (issued in Dom0, of course):

qvm-create --hvm ubuntu --label red

qvm-start ubuntu --cdrom=work-web:/home/user/Downloads/ubuntu-12.10-desktop-i386.iso

Of course the AppVM where the ISO is kept must also be running for this to work (this VM is now serving the ISO and acting as a disk backend).

Cloning HVM domains

Just like normal AppVMs, the HVM domains can also be cloned, either using a command-line qvm-clone command, or via manager's 'Clone VM' option in the right-click menu.

The cloned VM will get identical root and private image, and essentially will be identical to the original VM, except that it will get a different MAC address for the networking interface:

[joanna@dom0 ~]$ qvm-prefs win7

name : win7

label : green

type : HVM

netvm : firewallvm

updateable? : True

installed by RPM? : False

include in backups: False

dir : /var/lib/qubes/appvms/win7

config : /var/lib/qubes/appvms/win7/win7.conf

pcidevs : []

root img : /var/lib/qubes/appvms/win7/root.img

private img : /var/lib/qubes/appvms/win7/private.img

vcpus : 4

memory : 512

maxmem : 512

MAC : 00:16:3E:5E:6C:05 (auto)

debug : off

default user : user

qrexec_installed : False

qrexec timeout : 60

drive : None

timezone : localtime

[joanna@dom0 ~]$ qvm-clone win7 win7-copy

/.../

[joanna@dom0 ~]$ qvm-prefs win7-copy

name : win7-copy

label : green

type : HVM

netvm : firewallvm

updateable? : True

installed by RPM? : False

include in backups: False

dir : /var/lib/qubes/appvms/win7-copy

config : /var/lib/qubes/appvms/win7-copy/win7-copy.conf

pcidevs : []

root img : /var/lib/qubes/appvms/win7-copy/root.img

private img : /var/lib/qubes/appvms/win7-copy/private.img

vcpus : 4

memory : 512

maxmem : 512

MAC : 00:16:3E:5E:6C:01 (auto)

debug : off

default user : user

qrexec_installed : False

qrexec timeout : 60

drive : None

timezone : localtime

Note how the MAC addresses differ between those two, otherwise identical VMs. Of course, the IP addresses, assigned by Qubes, will also be different, to allow networking to function properly:

[joanna@dom0 ~]$ qvm-ls -n

/.../

win7-copy | | Halted | Yes | | *firewallvm | green | 10.137.2.3 | n/a | 10.137.2.1 |

win7 | | Halted | Yes | | *firewallvm | green | 10.137.2.7 | n/a | 10.137.2.1 |

/.../

If, for any reason, one would like to make sure that the two VMs have the same MAC address, one can use qvm-prefs to set a fixed MAC address for the VM:

[joanna@dom0 ~]$ qvm-prefs win7-copy -s mac 00:16:3E:5E:6C:05

[joanna@dom0 ~]$ qvm-prefs win7-copy

name : win7-copy

label : green

type : HVM

netvm : firewallvm

updateable? : True

installed by RPM? : False

include in backups: False

dir : /var/lib/qubes/appvms/win7-copy

config : /var/lib/qubes/appvms/win7-copy/win7-copy.conf

pcidevs : []

root img : /var/lib/qubes/appvms/win7-copy/root.img

private img : /var/lib/qubes/appvms/win7-copy/private.img

vcpus : 4

memory : 512

maxmem : 512

MAC : 00:16:3E:5E:6C:05

debug : off

default user : user

qrexec_installed : False

qrexec timeout : 60

drive : None

timezone : localtime

Please note that as of now Qubes does not support shared templates for HVM domains. This means that HVM domains cloned this way will have two separate copies of the whole filesystems. This has consequences in taking much more disk space compared to standard AppVMs that share the root fs with the Template VM. Another consequence is that it's probably not legal to clone a proprietary OS, such as Windows this way, unless your license specifically allows for that (even though Windows Activation won't complain when one sets identical MAC address for the cloned VMs, it's doubtful practice at best).

In the near future we plan on introducing shared template also for HVM domains, hopefully solving the problems described above.

Create Disposable VM Template
Instantiate DVM from template

Inter-VM file sharing (NFS server/client)

There are two main ways for copying files between VM’s.

The first one makes use of the QubesRPC (Remote Procedure Call) mechanisms, more precisely the qubes.Filecopy service. QubesRPC covered in a dedicated section of the current document. Noteworthy is the fact that QubesRPC used STDIO to transfer data between VMs and is thus rather slow in comparison to the Network File System (NFS) sharing. A simple transfer benchmark on the same system revealed a speed increase in a factor of ~5 by employing NFS. (QubesRPC qubes.Filecopy ~6MB/s, NFS share ~31MB/s).
In the following NFS server client configuration example, the server has the address of 10.137.2.16 and the client 10.137.2.9.
Configure server to export one or several folders to a specific machine or subnet. In order to export the home folder of the user “user” edit the NFS server configuration file /etc/exports and add:

/export 10.137.2.9/24 (rw, fsid=0, insecure, no_subtree_check, async)

/export/user 10.137.2.9/24 (rw, nohide, insecure, no_subtree_check, async)

Configure portmap by adding following line to the /etc/hosts.allow configuration file

rcpbind mountd nfsd statd lockd rquotad:
10.137.2.9
Configure the firewall rules on the NFS server by allowing connections on ports 111 (portmap TCp and UDP), 20048 (NFS UDP) and 2049 (NFS TCP).

iptables –I INPUT 5 –s 10.137.2.9 –p udp –dport 111 –j ACCEPT

iptables –I INPUT 5 –s 10.137.2.9 –p tcp –dport 111 –j ACCEPT

iptables –I INPUT 5 –s 10.137.2.9 –p tcp –dport 2049 –j ACCEPT

iptables –I INPUT 5 –s 10.137.2.9 –p udp –dport 20048 –j ACCEPT

Firewall rules can be listed by running:
iptables –L –n

In order to remove a firewall rule prom a given position from the list of rules do the following:
iptables –D INPUT 5
Qubes RPC
In dom0, there is a bunch of files in /etc/qubes_rpc/policy directory, whose names describe the available rpc actions; their content is the rpc access policy database. Currently defined actions are:

· qubes.Filecopy

· qubes.OpenInVM

· qubes.ReceiveUpdates?

· qubes.SyncAppMenus?

· qubes.VMShell

· qubes.ClipboardPaste?

· qubes.Gpg

· qubes.NotifyUpdates?

· qubes.PdfConvert?

These files contain lines with the following format:

srcvm destvm (allow|deny|ask)[,user=user_to_run_as][,target=VM_to_redirect_to]

You can specify srcvm and destvm by name, or by one of "$anyvm", "$dispvm", "dom0" reserved keywords (note string "dom0" does not match the $anyvm pattern; all other names do). Whenever a rpc request for action X is received, the first line in /etc/qubes_rpc/policy/X that match srcvm/destvm is consulted to determine whether to allow rpc, what user account the program should run in target VM under, and what VM to redirect the execution to. If the policy file does not exits, user is prompted to create one; if still there is no policy file after prompting, the action is denied.

On target VM, the /etc/qubes_rpc/RPC_ACTION_NAME must exist, containing the file name of the program that will be invoked.

On src VM, one should invoke the client via

/usr/lib/qubes/qrexec_client_vm target_vm_name RPC_ACTION_NAME rpc_client_path client arguments
Note that only stdin/stdout is passed between rpc server and client - notably, the no cmdline argument are passed. Source VM name is given by QREXEC_REMOTE_DOMAIN environment variable. By default, stderr of client and server is logged to respective /var/log/qubes/qrexec.XID files.

Be very careful when coding and adding a new rpc service. Unless the offered functionality equals full control over the target (it is the case with e.g. qubes.VMShell action), any vulnerability in a rpc server can be fatal to qubes security. On the other hand, this mechanism allows to delegate processing of untrusted input to less privileged (or throwaway) AppVMs, thus wise usage of it increases security.

RPC Internals

When an user in VM executes the /usr/lib/qubes/qrexec_client_vm utility, the following steps are taken:
· qrexec_client_vm connects to qrexec_agent's /var/run/qubes/qrexec_agent_fdpass unix socket 3 times. Reads 4 bytes from each of them, which is the fd number of the accepted socket in agent. These 3 integers, in text, concatenated, form "connection identifier" (CID)

· qrexec_client_vm writes to /var/run/qubes/qrexec_agent fifo a blob, consisting of target vmname, rpc action, and CID

· qrexec_client_vm executes the rpc client, passing the above mentioned unix sockets as process stdin/stdout, and optionally stderr (if the PASS_LOCAL_STDERR env variable is set)

· qrexec_agent passes the blob to qrexec_daemon, via MSG_AGENT_TO_SERVER_TRIGGER_CONNECT_EXISTING message over vchan

· qrexec_daemon executes qrexec_policy, passing source vmname, target vmname, rpc action, and CID as cmdline arguments

· qrexec_policy evaluates the policy file. If successful, creates a pair of qrexec_client processes, whose stdin/stdout are cross-connencted.

· The first qrexec_client connects to the src VM, using the -c CID parameter, which results in not creating a new process, but connecting to the existing process file descriptors (these are the fds of unix socket created in step 1).

· The second qrexec_client connects to the target VM, and executes qubes_rpc_multiplexer command there with the rpc action as the cmdline argument. Finally, qubes_rpc_multiplexer executes the correct rpc server on the target.

· In the above step, if the target VM is $dispvm, the dispvm is created via the qfile-daemon-dvm program. The latter waits for the qrexec_client process to exit, and then destroys the dispvm.

RPC Example
We will show the necessary files to create rpc call that adds two integers on the target and returns back the result to the invoker.

rpc client code (/usr/bin/our_test_add_client)

#!/bin/sh

echo $1 $2 # pass data to rpc server

exec cat >&$SAVED_FD_1 # print result to the original stdout, not to the other rpc endpoint

rpc server code (/usr/bin/our_test_add_server)

#!/bin/sh

read arg1 arg2 # read from stdin, which is received from the rpc client

echo $(($arg1+$arg2)) # print to stdout - so, pass to the rpc client

policy file in dom0 (/etc/qubes_rpc/policy/test.Add)

$anyvm $anyvm ask

server path definition (/etc/qubes_rpc/test.Add)

/usr/bin/our_test_add_server
invoke rpc via

/usr/lib/qubes/qrexec_client_vm target_vm test.Add /usr/bin/our_test_add_client 1 2

and we should get "3" as answer, after dom0 allows it.
RPC based inter VM file copy

In order to copy a file to VM (from Dom or other VM) one can also make use of the Qubes RPC mechanisms, more explicitly the qubes.Filecopy service.
/usr/lib/qubes/qrexec_client_vm target_vm qubes.Filecopy /usr/lib/qubes/qfile-agent /home/user/filename.ext

Where target_vm is the VM the Filename.txt should be copied to.
Copy Files from dom0 to VM

This can be accomplished by running in Dom0 the following command. Is based on qvm RPC and STDIO passing hence the cat command.

qvm-run --pass-io <src_domain> 'cat /path/to/file_in_src_domain' > /path/to/file_name_in_dom0

Other HowTo’s
Disable Windows USB Storage

In order to protect native Windows installations from malware residing on removable USB storage devices the usbstor.sys driver can be disabled. This way the PNP subsystem will not auto-mount the storage device and allows for prior virus scanning in a dedicated VM.
In order to disable the usbstor driver change registry value “"HKLM\System\CurrentControlSet\Services\Usbstor\Start" to 4.
Encrypted Stripe Loopack Device

One possibility to secure a Linux filesystem is by creating an encryption layer ontop of a stripe set (RAID 0) of loopback devices. This approach has the advantage that by having the filesystem distributed across several files (inside knowledge) even if one of the files leaks to the outside world together with the decryption key it cannot be decrypted. The following describes how to setup such.

Create two or more files for holding the stripe set:
dd if=/dev/zero of=./imgfile1.img bs=1M count=200
dd if=/dev/zero of=./imgfile2.img bs=1M count=200
Setup the loop devices

losetup /dev/loop1 imgfile1.img

losetup /dev/loop2 imgfile2.img

Create the stripe set
mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/loop1 /dev/loop2

After completion of the volume create the mdadm.conf file

mdadm --detail --scan >> /etc/mdadm.conf
Setup an encryption layer ontop of the newly created volume

losetup -e aes /dev/md0

Create filesystem
mkfs -t ext2 /dev/md0
VirtualBox HowTo’s

Usb device attachment

In order to attach a USB device to a guest OS running on VirtualBox following steps are necessary.

Find the name of the VM via console VBoxManage application.

c:\Program Files\Oracle\VirtualBox>VBoxManage.exe list vms
"Debian_usbip" {5e9de6d7-9e20-4e8a-bb6e-49c8c5e9b021}

Find the name of the USB device.
c:\Program Files\Oracle\VirtualBox>VBoxManage.exe list usbhost
Host USB Devices:
UUID: cb7961cc-de8f-4d2b-8be8-37ba95f15d60

VendorId: 0x058f (058F)

ProductId: 0x6387 (6387)

Revision: 1.3 (0103)

Port: 0

USB version/speed: 2/2

Manufacturer: Generic

Product: Mass Storage

SerialNumber: 2405C5DA

Address: {36fc9e60-c465-11cf-8056-444553540000}\0034

Current State: Busy

Attach the device to the VM.
c:\Program Files\Oracle\VirtualBox>VBoxManage.exe controlvm Debian_usbip usbatta

ch cb7961cc-de8f-4d2b-8be8-37ba95f15d60
XEN

Assessment
Introduction

This section aims to analyze the QubesOS in terms of employment within a security solution that the OpenSecurity project aims to provide.

QubesOS was developed with the intent of providing the user with a secure environment and the tools to ensure security of his data. One of its key features is having multiple virtual machine (VM) types with distinctive access restrictions. The user can choose the appropriate VM for processing content based on its sensitivity. For example data that shall never leave the network should be processed in a disposable VM (data cannot be persisted between runs) that has no network access.

Upon start and successful authentication (usually username/password) of QubesOS the user is presented with an X based user interface (currently KDE) where he can administrate the Dom0 domain. This means the user can start, stop and suspend applications and their host VMs as well as manage access and configuration of the system.

Overly simplified the network of an institution has servers and workstations. It has a certain amount of infrastructure services (like ActiveDirectory) running on dedicated hardware and serving a domain. When considering the usage of QubesOS in order to improve the security of a company or institutions network infrastructure, several deployment scenarios can be imagined. These will be investigated in the following sub-chapters.

As preliminary to the discussion is has to be mentioned that QubesOS was mainly developed for use with a Linux OS running as a VM and makes use of the X server to display the windows of the VM’s running applications in Dom0. This means that Dom0 will display (integrate) windows from different running AppVMs on its desktop (like any other OS does with its own application windows). In addition to the lightweight AppVMs there are the so called HVM. A HVM..

Network topology
One of the main challenges of the OpenSecurity project is enabling the users, currently restricted to a closed and secure local network, to work with external resources. Figure 1 below depicts the assumed network topology at this time (requrements are not yet available). On the right side there is the secure local network (labeled SAFE LAN) the user is currently limited to. Because of the sensible nature of the information (data) the user is dealing with, there are very strict resource access restrictions. These restrictions encompass access to external portable storage devices or internet (WWW) depicted on the left side of the figure and labeled (UNSAFE LAN). A further challenge is to protect sensible information from theft or accidental loss of the portable devices storing it.

[image: image3.emf]SAFE LANUNSAFE LAN

Figure 1 – Network Topology
QubesOS on workstation

This chapter discusses the feasibility of enforcing security of an employee’s workstation by using QubesOS.

The typical scenario consists of a Windows based company network running an ActiveDirectory service. Within the current QubesOS release is R2 and Windows can only be run in a so called HVM (fully virtualized). The X server cannot be used here to integrate the application windows on the Dom0 desktop, instead the whole operating system is displayed in its own window. The screen resolution of the Windows OS can be adjusted on the fly, though because of the imposed hardware restrictions the guest Windows OS does not know the actual supported resolutions so it can only choose within a predefined set. It is reported that there will be a commercially available (Pro) version of QubesOS that will improve on the Windows integration and provide features like Seamless Mode. Except Linux and Windows no further OS’es are supported at this time, so as except maybe for Germany where Linux is widely used in Government and Institutions, we assume that Windows is the current OS choice in Austrian institutions.

A further issue is the access to the administration level functionality of QubesOS. Part of the concept is having the user actively work with the Dom0 interface in order to administer his virtual machines and actively choose which VM he uses when executing a specific task. The main security breaches arise from user activity (intentional or not). QubesOS provides the necessary level of protection and at the same time implies an advanced user that understands the system and the consequences of his actions.

For users running Linux applications and not using other operating systems QubesOS is a valid instrumentation towards enforcing security. On the other side there are some weak points that should be addressed, as following.

Currently multi user privilege separation is not supported. This means that QubesOS does not protect the system from the user instead it tries to protect him from the outside world. At the momement there are no plans to implement multi-user support in Qubes. For example Dom0 user management has defaults that allow a restricted user (e.g. belonging to the users group) to execute privileged operations (e.g. example restart the machine).
At this time disposable Windows VM’s (in the QubesOS sense) are not possible. This means that copy on write filesystem support for HVM’s (e.g. Windows HVM) is not supported. The only current possibility to achieve disposal of filesystem changes in a HVM is through VM cloning (see section: 2.1.2.3).
QubesOS on server

The other possible approach is to use QubesOS on servers to enforce network security and malware protection. The following network architecture (Figure 2 – High Level Architecture) can be imagined. One of its main architectural features is the access isolation between the SAFE and UNSAFE networks. This is realized through the introduction of a security enforcer layer between the two. This layer has the purpose of disabling direct access between the two networks and intermediate the data exchange. The main components of this layer are the Security Enforcer Service, DropBox and Firewall(s).

[image: image4.emf]SAFE LANUNSAFE LAN

DropBox

External Storage

Security Enforcer Service (SES)

Virus Scanner + Encryption Handling

Figure 2 – High Level Architecture
In order to keep the tight security restrictions of the safe network external storage devices shall only be connected to unsafe computers and make use of the security enforcement layer to ensure the data is safe to be transferred to the safe network. The Firewall has the role of restricting the direction of network connections to the ones depicted by arrows. This means that on unsafe computers only inbound connections from the Security Enforcer Service (SES) and outbound connections to the internet are allowed. At the same time a machine in the safe network is restricted to outbound connections to the SES.

In terms of interactions between the components and data flow, upon connection of an external storage device the unsafe computer shall locally virus check (without using the SES) the file-system and unencrypted files in order to detect boot sector, autorun or other immediate threats that might compromise the local machine. Furthermore in order to initiate the transfer to the safe network, the requested dataset has to be copied to a dedicated location (e.g. My Downloads) on the unsafe machine. The SES component acts as an intermediary between the unsafe and safe domain and fulfills an additional functionality to that of virus scanning, namely encryption and decryption. In order to retrieve unsafe files the user within the safe network connects to the SES where he is presented with a user interface that lists the files stored on the unsafe machine in the dedicated location (My Downloads). He has the possibility to provide additional information necessary to decrypt a specific dataset. Upon requesting the files the SES uses the decryption information (key, certificate, etc.) for decrypting the files and virus checking them prior to handing them over to the user. The clipboard can be exposed in the same way and additionally a solution similar to virtual machine clipboard sharing is possible.

The DropBox component is managing the local storage of the Security Enforcer and stores safe and decrypted files and acts as a target for files waiting to be virus checked and encrypted for transport on external storage devices.

The OS used for browsing does not necessarily have to run on a dedicated computer, instead it is imaginable to be a virtual machine running on a dedicated server and having a remote desktop connection to it. For the case the remote desktop client is run on the safe network this scenario has to be further investigated as it implies a direct connection between the safe and unsafe networks.
At the same time the SES can and it is best to be run within a virtual machine as it can be easily replaced stopped and scaled in terms of used resources.
External Storage Access

The user wants to access a file, residing on an external storage device (e.g. USB memory stick), modify it using a LAN connected computer and save it back to the same device for transport.

The file can but not necessarily contains sensible information. Considering the first more sensible scenario the entire content of (or specific files only) the storage device might be encrypted. At the same time the user shall encrypt the file before storing back to the device (he might choose not to).

Several high level requirements con be identified from the above scenario:

1. The external storage shall not be connected to the SAFE LAN in order to prevent execution or insertion of code within the network.

2. The storage device shall be connected to a machine that ideally cannot natively execute code residing on the device (e.g. file server running on an embedded device)

3. File-system shall be virus-checked upon connection to the UNSAFE LAN

4. If the file-system is encrypted, decryption shall be performed previously to virus-checking

5. If only specific parts of the file-system are encrypted this shall be detected and those portions decrypted and virus checked

6. Requested virus checked files shall be copied (pushed) at a safe location from where users from the SAFE LAN can access them (pull).

7. After saving the changes, the file shall be virus-checked prior to encryption and storage to the external media.

Web Browsing and File Access

By means of a web browser the user locates a resource on the WWW and wants to use/process it on the SAFE LAN. He downloads the file and stores it on the local machine or copies the contents to the clipboard.

High level requirements:

1. The user shall store the document at a predefined location from where the security system can take the data check and copy it to a safe location accessible from the SAFE LAN.

3 Other Technologies

USB/IP

Introduction
In QubesOS the storage domain (and its responsible VM) does the job of handling storage devices and providing access to them for other VMs. It has driver (kernel modules) for a set of devices and provides functionalities like: copy on write and readonly access to storage. Usage of removable storage provides protection against boot sector (or autorun) initiated malware execution. Yet it does not prevent client virtual machines (e.g. Windows HVM) from reading and executing malware infected code stored on the removable device. The storage domain provides access to the managed devices through specialized device drivers exposing a IPC based interface to the client VM.
Within the OpenSecurity project USB/IP can have a real used in terms of the scalability of the malware detection subsystem. The scanning malware scanning operations take quite some time and usually employ heuristics to speed up this process. Usually disabling heuristics yields better results and use of higher resources. It is imaginable to have dedicated hardware running malware scanning software within disposable virtual machines and having USB storage devices exposed to them. This approach has multiple advantages:

· by running the scanning software within a disposable virtual machine even if the scanner / machine gets compromised the problem will be contained.
· the same or different virtual machines can be configured with different scanning software and have the storage device exposed to them.

· scanning can be distributed among virtual and physical machines allowing for load balancing.
Architecture

The software developed by the USB/IP opensource project (http://usbip.sourceforge.net/) provides a general USB sharing system over the network. It exposes a USB device physically connected to a machine (server) with their full functionality by tunneling the USB protocol over a TCP/IP connection (encapsulates USB I/O messages into TCP/IP payloads). It makes use of specialized device drivers and a server and client software components. Thus a client computer can use remote USB devices as they were directly attached. Currently the Windows and Linux variants are available. The USB/IP supports the following classes of USB devices (as listed by the project site):
· USB storage devices: fdisk, mkfs, mount/umount, file operations, play a DVD movie and record a DVD-R media.

· USB keyboards and USB mice: use with linux console and X Window System.

· USB webcams and USB speakers: view webcam, capture image data and play some music.

· USB printers, USB scanners, USB serial converters and USB Ethernet interfaces: ok, use fine.
In the client, the VHCI (Virtual Host Controller Interface) driver is implemented as a USB host controller driver. The VHCI driver emulates a real USB host controller interface for virtual attachment/detachment, enumeration and initialization of remote USB devices. It encapsulates USB request blocks and then transmits USB/IP requests to remote server hosts. In a server, the Stub driver is implemented as a USB per-device driver. The Stub driver decapsulates USB/IP requests into USB requests and then submit them to real USB devices.
[image: image5.png]
Figure 3 - USB/IP Overview
Usage
In the following an example is given on how to set up an USB/IP server and client. For the purposes of this example the address server.example.com with the ip of 192.168.100.1 and client.example.com with the address of 192.168.100.2 will be used both running Ubuntu linux.
Setting up the server

Install usbip:

root@server:~# aptitude install usbip

Load the usbip kernel modules:

root@server:~# modprobe usbip

root@server:~# modprobe usbip_common_mod
Verify that the modules are loaded:

root@server:~# lsmod | grep usbip

You should get a similar output:

usbip 15124 0
usbip_common_mod 13605 1 usbip

In order to insure these modules get loaded automatically edit /etc/modules and add the modules to the list.
Start the usbip daemon:

root@server:~# usbip –D

Now attach a USB device that you want to export, and list the connected USB devices:

root@server:~# lsusb

Depending on the connected devices you should be able to see a similar list of devices in the form of: Bus XXX Device YYY: ID VendorID:DeviceID

Bus 001 Device 002: ID 0781:5151 SanDisk Corp. Cruzer Flash Drive

Locate the VendorID:DeviceID pair. In our example for the SanDisk USB flash drive is 0781:5151.
List the kernel modules assigned to the USB connected devices.

root@server:~# usbip_bind_driver –list
The output should be similar to the following one indicating that the current kernel module handling your USB storage device is usb-storage.
List USB devices
 - busid 1-1 (0781:5151)
 1-1:1.0 -> usb-storage
Assign the USB/IP driver to the device:

root@server:~# usbip_bind_driver --usbip 1-1

A similar output should indicate that the usbip kernel module was bound to handle the storage device:

** (process:765): DEBUG: 1-1:1.0 -> usb-storage
** (process:765): DEBUG: unbinding interface
** (process:765): DEBUG: write "add 1-1" to /sys/bus/usb/drivers/usbip/match_busid
** Message: bind 1-1 to usbip, complete!
Your usbip daemon is now listening on port 3240 which you can verify by executing:

root@server:~# netstat –tap

The output should contain a line like following:

Proto
Recv-Q
Send-Q
Local Address
Foreign Address
State
PID/Program name
tcp
0
0
*:3240

:

LISTEN
763/usbipd
Setting up the Client

Install usbip on the client machine
root@client:~# aptitude install usbip

Load the usbip_common_mod and vhci_hcd kernel module:

root@client:~# modprobe vhci_hcd ; modprobe usbip_common_mod

Check if the module was loaded by issuing:

root@client:~# lsmod | grep vhci_hcd

The output should look similar to this one:

vhci_hcd 19800 0
usbip_common_mod 13605 1 vhci_hcd
Automatic loading of vhci-hcd can be achieved by adding this module to the list in /etc/modules.List the devices connected to server (ip 192.168.100.1) by executing:

root@client:~# usbip -l 192.168.100.1

The storage device (SanDisk in this example) shall be visible within the output of the previos command:

- 192.168.100.1
 1-1: SanDisk Corp. : Cruzer Flash Drive (0781:5151)
 : /sys/devices/pci0000:00/0000:00:07.2/usb1/1-1
 : (Defined at Interface level) (00/00/00)
 : 0 - Mass Storage / SCSI / Bulk (Zip) (08/06/50)

Attach the device to the client machine:
root@client:~# usbip -a 192.168.0.100 1-1

The device should be attached now. Verify by listing the usb devices:

root@client:~# lsusb

A similar output shall be visible on the client:

Bus 001 Device 002: ID 0781:5151 SanDisk Corp. Cruzer 256/512MB Flash Drive
The project documentation lists additional options and functionalities like e.g. releasing or reassigning modules to devices.

Bromium

http://www.brianmadden.com/blogs/guestbloggers/archive/2012/06/20/guest-blog-from-simon-crosby-explaining-what-bromium-is-and-how-it-works.aspx
Bromium micro-virtualization: trustworthy systems by design

Bromium aims to transform the resilience of computer systems, making them affordable, manageable and trustworthy by design. We are aware that this is a lofty goal, and we know we can’t achieve it overnight. But we are confident that our architecture possesses key ingredients to dramatically advance the state of the art. It is simple, elegant and can be broadly applied.
We believe that a trustworthy system empowers the user without increasing risk to the enterprise, and can enable IT to securely navigate the challenges of consumerization, mobility, and personal use of enterprise devices. Bromium’s key innovation—micro-virtualization—is the key building block of a trustworthy system. Micro-virtualization protects vulnerable software (even when the device hasn’t been patched) and secures enterprise data at runtime, automatically discarding malware to deliver a resilient system—all industry firsts that save money and time, and keep users productive.

Bromium micro-virtualization is a second-generation virtualization technology that extends the isolation principles of virtualization into a running operating system (OS - let’s assume Windows for now). It is implemented by the Bromium Microvisor, a lightweight special-purpose hypervisor that is deployed as a small MSI package that extends a single, natively installed Windows desktop, making it naturally resilient in spite of user errors and software vulnerabilities, and protecting it when accessing data or code of unknown provenance and unfathomable trust. The Microvisor is completely hidden from the user, who enjoys a native desktop user experience.
The Microvisor automatically, instantly and invisibly identifies each vulnerable task and instantly hardware-isolates it within a micro-VM - a lightweight, hardware-backed isolation container that polices access to Windows services. Micro-VMs run natively, with full performance, but continually protect the system – even from unknown threats: A micro-VM can only access Windows services and resources via “enlightened” service APIs that cause the virtualization hardware to pause execution of the micro-VM (a hardware VM_EXIT) yielding control to the Microvisor.

The architecture specifically relies on Intel VT to guarantee that task-specific mandatory access control (MAC) policies will be executed, in a trusted execution context, whenever a micro-VM attempts to access key Windows services. It imposes tight control over access to sensitive files, networks and devices according to the “principle of least privilege”. The Microvisor creates micro-VMs instantaneously, and can easily control hundreds of concurrent micro-VMs on a modern (Core i3/i5/i7) PC. Micro-VMs are tiny because they contain only task-specific state, and they run natively. They are hardware isolated from each other and from Windows. Trusted and untrusted tasks can thus coexist on a single system with guaranteed mutual isolation. To Windows, micro-VMs are just tasks - it schedules them for execution, and tracks their performance and resource usage. Key properties of the system include:

When a micro-VM executes, any changes it attempts to make to its view of the “golden” IT provisioned Windows instance are “Copy on Write” or CoW. For example, if an attacker changes a Windows kernel memory page, it only succeeds in modifying an instantly created local copy of that page, and not the original.
Each micro-VM is granted only a narrow view of the file system that contains just the files it needs – an implementation of the principle of “least privilege” – with CoW update semantics.

When a micro-VM terminates (the user closes the window, or it terminates) the Microvisor discards the task’s memory image and uses a persistence policy to determine whether to persist any new files. Any persisted files are securely tagged with meta-data that encodes their provenance and trust; the Microvisor ensures that untrusted files can only be accessed from a micro-VM.

The Microvisor restricts micro-VM access to network services: Untrustworthy tasks cannot access “trusted” networks or “high value” SaaS/RDS applications, and access to “high value” sites over an untrustworthy network requires a secure end-to-end VPN.

Because micro-VMs are just tasks, their lifecycle and resource management must be automatic and instantaneous, in response to user actions. This permits us to use virtualization to deliver enhanced security and resilience without any change to the end user experience. It also means no new IT skill sets or tools are required to manage the Microvisor. The Microvisor is managed using simple enterprise policies and has no management console of its own.

The Microvisor’s attack surface is narrow. To escape from a micro-VM an attacker must compromise the system at the enlightened Windows service API – the hypercall API. The Microvisor does not trust hypercalls and the interface is implemented in less than 10,000 lines of hardened code. The architecture changes the attack surface of the system from O(10M) LOC to O(10K) LOC.

Micro-virtualization in Action

Micro-virtualization adds hardware-enforced task isolation to the operating system. It can be used to solve some of the most challenging problems in enterprise IT where traditional software abstractions for isolation have been shown to be inadequate. Some uses are discussed below.

Blocking advanced persistent threats

Recent security compromises have shown that sophisticated attackers use advanced malware to evade host and network based security. Using micro-virtualization it is possible to make end points vastly more secure.

By ensuring that each vulnerable or untrustworthy task (eg: opening a web page or an email attachment) is executed in its own micro-VM, Bromium can guarantee that a compromised task cannot access enterprise data or applications.

Bromium assumes that at some point a task in a micro-VM will be attacked and will be compromised. The granular isolation afforded by the Microvisor, together with the resource control policies, ensures that any attack will be confined to the micro-VM, that no enterprise data will be stolen, and that the attack will be automatically discarded.

Protection of Sensitive Applications

Increasingly, users need to access enterprise applications from untrustworthy networks. While it is possible to securely identify the user, the enterprise still cannot trust the device. If a key-logger or screen-scraper has compromised the PC then data from the application session can be stolen.
This problem can be overcome by first ensuring that all access to untrustworthy domains and documents is isolated in micro-VMs. Second, we can isolate access to the remote application within an additional micro-VM so that application data cannot be stolen. The Microvisor permits the micro-VM to communicate only with the authenticated remote application using an encrypted session. It can also enforce enterprise policies to prevent local storage/printing of sensitive data.

Data loss prevention

Bromium micro-Virtualization can empower every user with powerful Data Loss Prevention (DLP) features. An untrusted micro-VM cannot access files that are hidden by its resource policy, but it is possible to define policies that would allow this in some circumstances. For example, one could permit a user to attach a confidential document to an untrusted web mail, only if the document is encrypted when presented to the micro-VM, and the enterprise is securely notified.

Desktop virtualization done right

Many enterprises have been piloting deployments of Virtual Desktop Infrastructure (VDI) as part of their desktop virtualization strategy. But VDI is useful for only a small percentage of users. For the vast majority of users the preferred client form factor is the PC, with a strong trend toward laptops that serve a mobile workforce. Micro-virtualization delivers every benefit of VDI together with application security on the devices that users love to use – their PCs and laptops.

Every new micro-VM is created from the known-good golden image, which only changes under IT control

Enterprise data is protected at runtime, ensuring security and compliance

Users get to safely use enterprise data and applications both on- and off-line, from any network

The desktop is protected from malware, viruses and APTs

Granular policies for access to and distribution of enterprise data are applied on every PC, for every task

IT manages updates when it suits them, using existing tools for image management and patch distribution.

PC configuration & lifecycle management

Desktop administration teams in the enterprise are rightly concerned about the security of their desktops when new vulnerabilities are exposed and before devices can be patched.

Because Bromium assumes that any task may be compromised and because the Microvisor is designed to isolate compromised tasks, the desktop will always be protected, even with vulnerable software. IT staff can apply patches when it suits them and users, with full confidence that their systems are always protected.

Perhaps as importantly, Bromium enabled PCs do not need to be re-imaged when an attack occurs. The system shrugs off malware, keeping the system “gold”. This saves countless hours of IT time, reduces support calls, and keeps users productive.

Onward, toward trustworthy computing!

Bromium micro-virtualization adds granular, resilient task-based isolation to Windows. It has the opportunity to dramatically enhance security, simplify software lifecycle management, and to protect data at all times, by making endpoints trustworthy and resilient. It can achieve this without changes in management practice or toolsets, and without sacrificing the powerful native desktop user experience. It has the opportunity to be a key ingredient of any future trustworthy computer system.

Inter-VM Messaging

Introduction

Java Message Service (JMS)

http://de.wikipedia.org/wiki/Java_Message_Service
The Java Message Service (JMS) API is a Java Message Oriented Middleware (MOM) API for sending messages between two or more clients. JMS is a part of Java Platform, Enterprise Edition, and is defined by a specification developed under the Java Community Process as JSR 914. It is a messaging standard that allows application components based on the Java Enterprise Edition (JEE) to create, send, receive, and read messages. It allows the communication between different components of a distributed application to be loosely coupled, reliable, and asynchronous.
Apache Message Queue (ApacheMQ)

Apache ActiveMQ is an open source (Apache 2.0 licensed) message broker which fully implements the Java Message Service 1.1 (JMS). It provides "Enterprise Features" like clustering, multiple message stores, and ability to use any database as a JMS persistence provider besides VM, cache, and journal persistency.

Apart from Java, ActiveMQ can also be used from .NET, C/C++ or Delphi or from scripting languages like Perl, Python, PHP and Ruby via various "Cross Language Clients" together with connecting to many protocols and platforms. These include several standard wire-level protocols, plus their own protocol called OpenWire.
ActiveMQ is used in enterprise service bus implementations such as Apache ServiceMix, Apache Camel, and Mule.
Coinciding with the release of Apache ActiveMQ 5.3, the world's first results for the SPECjms2007 industry standard benchmark were announced. Four results were submitted to the SPEC and accepted for publication. The results cover different topologies to analyze the scalability of Apache ActiveMQ in two dimensions.

4 Anti-Malware

5 Cryptography
Encryption and Decryption
The following provides the necessary steps for creating and mounting an encrypted file container in terms of a example based on truecrypt.

1.a
Create a container with password:

truecrypt -c "containername" --password="password" --volume-type=normal --filesystem=none --encryption=aes --size="size" --hash=SHA-512 --random-source=/dev/urandom -k "" --non-interactive

If the user should type in the password a user interaction is necessary. The creation process can take a long time. The bigger the container should be, the more time is needed for the process to create it.

1.b
Create a container with an key-file:

truecrypt -c "containername" --volume-type=normal --filesystem=none --encryption=aes --size="size" --hash=SHA-512 --random-source=/dev/urandom -k "keyfile" --non-interactive

If the key-file is protected with an passphrase a user interaction is necessary.

2.a
Decrypt the container with an password:

truecrypt "containername" --password="password" --filesystem=none -k "" --protect-hidden=no --non-interactive

If the user should type in the password a user interaction is necessary.
2.b
Container entschlüsseln mit keyfile:
truecrypt "containername" --filesystem=none -k "keyfile" --protect-hidden=no --non-interactive

If the key-file is protected with an passphrase a user interaction is necessary.

3
Find the decrypted container.:

truecrypt –l

1: /path/containername /dev/mapper/truecrypt1

4
Create a filesystem in the container:

mkfs.ntfs /dev/mapper/truecrypt1

5
Mount the container:

mount /dev/mapper/truecrypt1 /mountpoint

6
Copy files into the container:

cp/rsync/mv/scp /source /mountpoint

7
Unmount the container:

umount /mountpoint

truecrypt -d "containername"

8
Open an existing container:

See points “2.a/b”, “6” and “7”.

6 Ideas

Software Choice

Browser / Operating System

Known flaws uncorrected for long periods of time

Security not well understood in software development (testing for security issues)
�Provide section

�explain

�Provide introductory description to JMS

_1436280513.vsd
�

�

�

�

�

�

�

�

_1436280514.vsd
�

�

�

�

�

�

�

�

