Project: OpenSecurity
Architecture

	Document Control Page

	Creator
	AIT

	Editor
	Mihai Bartha

	Subject
	OpenSecurity - Architecture

	Meeting date(s)
	

	Meeting location
	

	Publisher
	OpenSecurity consortium

	Type
	Text

	Format
	Application/msword

	Language
	EN-GB

	Creation date
	2013-01-07

	Rights
	© Copyright “OpenSecurity consortium”.

	Audience
	 FORMCHECKBOX
 internal

	Review status
	 FORMCHECKBOX
 Draft
 FORMCHECKBOX
 Final

	Action requested
	 FORMCHECKBOX
 to be checked by Partners present at the meeting

	Revision history

	Version
	Date
	Modified by
	Comments

	0.1
	2013-04-12
	Mihai Bartha
	Initial version

	0.2
	2013-04-19
	Jürgen Eckel
	Extended Chapter 3.1

	0.3
	2013-04-22
	Mihai Bartha
	Integrated section 3.2

	0.4
	2013-05-27
	Frank Treichl
	Translating and modifications on 2.1.1, 2.1.2 and 6.1.1

Table of contents
1Introduction
6
2Use Cases
7
2.1External Storage Access
7
2.1.1Use-case „Export Encrypted Data“
7
2.1.2Use-case „Import Encrypted Data“
9
1.User tries to import encrypted data.
9
2.2Use-case “Laptop joins Safe Network”
11
2.3Use-case „Safe Internet Access”
11
3Requirements
13
3.1Initial high lever requirements
13
4Architecture
14
4.1Overview
14
4.2Locally connected storage devices
14
4.2.1Import Encrypted Data
14
4.2.2Export Encrypted Data
15
4.3Self Scan – Join Local Network
15
4.4Safe Internet Access
16
4.5Antivirus Tools and Usage Patterns
17
4.6Cryptographic Algorithms and Services
19
4.6.1Standard TrueCrypt workflow
20
4.6.2Integration into the OpenSecurity layer
21
4.6.3Problems in this solution
22
5References
23
6Annexes
24
6.1.1Encryption and Decryption
24

1 Introduction

This document aims at providing the architecture based on the requirements identified in AP2. One of the main challenges of the OpenSecurity project is enabling the users, currently restricted to a closed and secure local network, to work with external resources. Figure below depicts the network topology. On the right side there is the secure local network (labeled SAFE LAN) the user is currently limited to. Because of the sensible nature of the information (data) the user is dealing with, there are very strict resource access restrictions. These restrictions encompass access to external portable storage devices or internet (WWW) depicted on the left side of the figure and labeled (UNSAFE LAN). A further challenge is to protect sensible information from theft or accidental loss of portable devices.
Figure – Network Topology

2 Use Cases

2.1 External Storage Access

The user wants to access a file, residing on an external storage device (e.g. USB memory stick), modify it using a LAN connected computer and save it back to the same device for transport, or to a shared folder on the local network.

The file can but not necessarily contains sensible information. Considering the first more sensible scenario certain files or the entire content of the storage device might be encrypted.
At the same time the storage device could contain harmful code that should be identified and if possible removed or the containing files quarantined.
If the user saves a file to a external storage device it should be encrypted prior to storing it to the device (although he might choose not to).
Use-case „Export Encrypted Data“

1. User tries to export Data.

2. User connects storage (USB stick, HD, …) to the computer.

3. User starts OpenSecurity client.

4. User selects “data export” in the client.

5. User selects the data to export.

6. User selects the destination for the export.

7. User enter his password or gives his key-file to the client.

8. User clicks on “start export”.

9. Data will be transferred to local Security VM/server.

10. Data will be scanned for malware (virus, worm, trojan, …).

11. Data will be encrypted on the Security VM/server.

12. Data will be encrypted. See “Encryption and Decryption”.
13.
13.1. If occuring, error messages have to be delivered to the user.

14. Anti virus VM/server write encrypted data direct to the storage.

15. User gets a success message from the OpenSecurity client.
[image: image3.png]Open Security
Client

equest data import

Select destination

_Possible Err

_Possible Err

Security
VMiserver

Encrypted?,
0

Encrypted!

Decrypt datg
Qgcrypted datal

Scan data.

Clean data’

Write data,
>

Success

External Storage
(USB Stick, ...)

Get data
Retrun data

Internal Storage
(samba,)

Figure - Export Encrypted Data
Use-case „Import Encrypted Data“

1. User tries to import encrypted data.

2. User connects storage (USB stick, HD, …) to the computer.

3. User starts the OpenSecurity client.

4. User selects “import Data”.

5. User selects data.
User selects the destination for the import.
System decides if data is encrypted (white list).
6. User enter his password or gives his key-file to the client if the data is encrypted.

7. User clicks on “start import”.

Encrypted container or plain data will be transferred to the Security VM/server
8. If data is an encrypted container, the system (Security VM/server) will decrypt it. See “Encryption and Decryption”.

8.1. If occuring, error messages have to be delivered to the user.

9. Data will be scanned for malware (virus, worm, trojan, …).
Security VM/server write encrypted data direct to the local storage.

10. User gets a success message from the OpenSecurity client.

[image: image4.png]User Open Security Security
Client VMiserver

Request data export

Get data Internal Storage

Get data (samba, ...)
[=edad
Get data

Retrun data

Scan data
Clean data

=S
Encrypt dat

crypied data Extemnal Storage

(USB Stick, ...)

_Possible Erm

_Possible Err Wiite data.
| EEam——

Success
Success

Figure - Import Encrypted Data
2.2 Use-case “Laptop joins Safe Network”

The user wants to rejoin the Safe Network with his Laptop after working outside the company (connected to untrusted networks). Due to the high risk of such networks the machine is assumed to be compromised and needs to be malware checked prior to allowing access to the Safe Network and its network shares containing sensible data.

2.3 Use-case „Safe Internet Access”

By means of a web browser the user locates a resource on the WWW and wants to use/process it on the SAFE LAN. He downloads the file and stores it on the local machine or copies the contents to the clipboard. This functionality will be addressed in the second year of the OpenSecurity project, where this generic use-case will be examined in more detail.

3 Requirements

3.1 Initial high lever requirements

Several high level requirements can be identified from the above use cases. Based on the user questionnaire further requirements will be documented as soon as they will be available.

1. The user shall store the document at a predefined location from where the security system can take the data check and copy it to a safe location accessible from the SAFE LAN.

2. The external storage shall not be connected to the SAFE LAN in order to prevent execution or insertion of malicious code within the network.

3. The storage device shall be connected to a machine that ideally cannot natively execute code residing on the device (e.g. file server running on an embedded device).

4. File-system shall be virus-checked upon connection to the UNSAFE LAN.

5. If the file-system is encrypted, if possible, decryption shall be performed previously to virus-checking.

If only specific parts of the file-system are encrypted this shall be detected and, if possible, those portions decrypted and virus checked. Otherwise the specific parts should be quarantined and checked by a supervisor.
6. Requested virus checked files shall be copied (pushed) at a safe location from where users from the SAFE LAN can access them (pull).

7. After saving the changes, the file shall be virus-checked prior to encryption and storage to the external media.

4 Architecture

4.1 Overview

The main design decisions was using the concept of “Security by Isolation” in combination with virtualization technology in order to enable better enforcement of security rules and process boundaries, ultimately resulting in better security. QubesOS is a XEN based hypervisor that implements the above mentioned concept and has been chosen as underlying framework for our implementation.

This section provides the initial system architecture in terms of components and interactions for the use-cases described in the sections 2.1 and 2.2.

4.2 Locally connected storage devices

4.2.1 Import Encrypted Data

Upon connection of a removable storage device to a workstation running QubesOS the storage device is detected by the storage domain. The administration domain (Dom0 VM) can intercept this event and trigger the necessary actions for enabling file import.

At first a new Security VM is instantiated from a purpose built VM template, that has the role of scanning the removable storage for malware and provides the software interfaces that enable the user to choose and decrypt the files he/she wants to import.
[image: image1.jpg]copy imported files-

PersonalVM |————get contents / provide key / iitate mport———| _ SecurityM

publsh new SecuritVM—————| Dom [—create 1/ attachdevice ntatescan

Figure - Import Encrypted Data

Upon connection Dom0 attaches (binds) the storage device to the newly created SecurityVM and initiates the virus scanning. Upon completion it publishes the SecurityVM reference to the users AppVMs.

At this point the user can query the contents of the storage device from the SecurityVM and choose to import specific files. In case of encrypted archive files the user has to provide the key so that SecurityVM can decrypt and malware scan the contents. The selected files are copied to a network share (NFS) and exposed to the other VMs. Dom0 enables network access to the SecurityVM NFS server and the user can retrieve the data.

The user can choose to release the storage device, upon which all encrypted archived are closed, the NFS share gets released, and the SecurityVM destroyed.

4.2.2 Export Encrypted Data

Exporting encrypted data can be described as an extension to the previous section. By making use of the NFS functionality it is possible to write files to the SecurityVM shared folder. These files are scanned and written back to the storage device on demand or upon device release.

4.3 Self Scan – Join Local Network

The laptops of users working part time outside of institutional boundaries and joining public (unsecure) networks can become compromised and pose threat to the network security. Thus such systems have to be malware scanned and updated upon rejoining the home network and accessing sensible content from the network shares.
[image: image2.jpg]i tetemplate | SecurityServer
Personalvt il [updatetempiste-p| Securys
3
netvia/
f-start template v rigger update allow AN access for
frewliv b
T igerscan
Domd st Fleshare
instance.
- createSecurityMfengger scan

Figure - Self Scanning and Update

Upon rejoining the safe network the netVM/firewallVM triggers the update of the SecurityVM
 template. At this point the OS has already received an IP address in a subnet where only access to the SecurityServer is provided. Consequently the administrative domain (Dom0) triggers the update of the SecurityVM Template that receives the latest antivirus definition and updates.

Upon successful update Dom0 creates a new SecurityVM instance and instructs the AppVM’s to share their private content (/home and /usr/local) folders through NFS, in order to be scanned. Dom0 has access to the private data of the VMs in the form of image files
 and it is possible to provide these to the SecurityVM for scanning. This method has the advantage that no memory scanning is necessary. After the scan has finished Dom0 destroys the SecurityVM instance.

A further possibility, although rather slow, consists in exposing the private data of the AppVM’s to the
SecurityServer for scanning.

After scanning the results are sent by netVM/firewallVM to the SecurityServer where the decision for allowing access to the safe network and network shares is taken.

4.4 Safe Internet Access
Figure – High Level Architecture

One of the main architectural features is the access control between the safe and unsafe networks. This is realized through the introduction of a security enforcer layer between the two networks. This layer has the purpose of disabling direct access between the safe and unsafe networks and intermediate the data exchange between the networks. The main components of this layer are the Security Enforcer Service, DropBox and Firewall. In order to keep the tight security restrictions of the safe network, external storage devices shall only be connected to unsafe computers and make use of the security enforcement layer to ensure the data is safe to be transferred to the safe network. The Firewall has the role of restricting the direction of network connections to the ones depicted by arrows. This means that on unsafe computers only inbound connections from the Security Enforcer Service (SES) and outbound connections to the internet are allowed. At the same time a machine in the safe network is restricted to outbound connections to the SES.

In terms of interactions between the components and data flow, upon connection of an external storage device the unsafe computer shall locally virus check (without using the SES) the file-system and unencrypted files in order to detect boot sector, auto-run or other immediate threats that might compromise the local machine. Further in order to initiate the transfer to the safe network, the requested dataset has to be copied to a dedicated location (e.g. My Downloads) on the unsafe machine. The SES component acts as an intermediary between the unsafe and safe domain and fulfills an additional functionality to that of virus scanning, namely encryption and decryption. In order to retrieve unsafe files the user within the safe network connects to the SES where he is presented with a user interface that lists the files stored on the unsafe machine in the dedicated location (My Downloads). He has the possibility to provide additional information necessary to decrypt a specific dataset. Upon requesting the files the SES uses the decryption information (key, certificate, etc.) for decrypting the files and virus checking them prior to handing them over to the user. The clipboard can be exposed in the same way and additionally a solution similar to virtual machine clipboard sharing is possible.

The DropBox component is managing the local storage of the Security Enforcer and stores safe and decrypted files and acts as a target for files waiting to be virus checked and encrypted for transport on external storage devices.

The OS used for browsing does not necessarily have to run on a dedicated computer, instead it is imaginable to be a virtual machine running on a dedicated server and having a remote desktop connection to it. For the case the remote desktop client is run on the safe network this scenario has to be further investigated as this scenario implies a direct connection between the safe and unsafe networks.
At the same time the SES can and it is best to be run within a virtual machine as it can be easily replaced stopped and scaled in terms of used resources.

Antivirus Tools and Usage Patterns

We’ve discussed several possibilities concerning the integration of malware identification within the proposed framework. The generic approach has been outlined above and contains the SES
. The SES is capable of handling encryption and malware identification. The current design favors a modular server structure.

The scan server can be put as a central instance behind a load balancer or be located within a client based virtual environment. Having that the access and the data flow to and from the scan server can be strictly managed and secured. The location decision concerning the dropbox and the verified storage is independent from the location of the scan server.

The basic workflow looks like this:

This scenario can be in any environment as you can imagine. The following non-complete matrix shows the most likely combinations.
	Dropbox
	Scan Server
	Verified Storage

	Local
	Local
	Local

	Local
	Central (network)
	Local

	Central (network)
	Local
	Central (network)

	Central (network)
	Central (network)
	Central (network)

Table 3.1-1

The scan server itself comes along with a RESTFul API and can thus be located within any environment. The comparison between the local or the central integrated scan server can be simplified by the inspection of certain features and possibilities. The following paragraphs will first introduce the characteristics. Thereafter a direct comparison will be listed.
· Scalability: A local installed scan server can of course be duplicated but will in any case consume limited resources. The central approach could integrate a load balancer and set up additional servers. Hence, the central service can be adjusted and extended more easily.
Maintenance/Integration: The local integration comes along with a more complex integration for each client. The administrative work to be done is thus much more complex and time consuming.

· Network load: The network load is of course minimized by the local integration approach.
· Virus DB/Engine Updating: The updating process can be managed and maintained more easily in the central approach. The supervision is also much easier in this case.
· Mobility: The local integration enables mobile devices to be disconnected from the company network and could assure a certain security in case of mobile activities without having access to the institutions network.
	Attribute
	Local
	Central

	

	

	Network load
	
	

	

	

Table 3.1-2

The usage and integration requirements will actually decide the integration approach. The free configurability of the infrastructure (Table 3.1-1) together with the RESTFUL scan server API as well as the pros and cons for certain attributes enables the framework to be rather flexible in terms of integration.

This insight enables the design of a system with a central scan server for usual workstations and mobile devices per default. In addition mobile devices come along with a local scan server integrated which is only activated in case the mobile device is not connected to the company network. This would enable a more secure working environment during traveling. Of course a final check/verification of the central scan server has to be performed before the data is integrated to central storage system.

Cryptographic Algorithms and Services

If company data leaves the house on a mobile device like an USB stick or a laptop, encryption is a must have. The device can be lost or stolen and after such an event the documents on it should not get revealed to public or to a competitor. Also if data is transferred from one company to another or between branch offices privacy of the transferred data should be ensured.
Other problems come up when encrypted data should be imported to the internal company network
. The data can contain maleware, but the anti virus software can not check encrypted data. So the import workflow has to include a detection and decryption – if possible – of encrypted data prior to the virus-checking phase. If the data can be decrypted and is free of viruses and maleware it can be imported to the internal company network.

Based on this requirements and the needs from the demand carriers we searched for and evaluated possible solutions. In general, there are not much alternatives for encryption systems fulfilling the given requirements: The user requests for an easy usable and secure system that is compatible in a wide range. This means it should be possible to create, open and update encrypted files with different operating systems like Windows, Linux, Mac,… .

The only system independent and widely used software for such purposes is TrueCrypt. TrueCrypt uses encrypted containers for saving files into it. It also provides different encryption and hash algorithms that can be combined in several ways.
Standard TrueCrypt workflow
The standard usage of TrueCrypt is explained in the next steps:
[image: image5.png]create encrypted container encrypted

) [container
dokuments|

mount encrypted container
@) ml mounted
Container

@)

Y

unmount container encrypted
e
() container

Figure – TrueCrypt workflow
At first an encrypted container has to be created (1). At creation time the user can choose the size of the container, the used encryption and hash algorithms. Most used combination is AES as encryption algorithm and RIPEMD-160 as hash algorithm. After that the user has to choose a password or a keyfile to protect the data. The last step of the creation process is to choose a filesystem like FAT, NTFS or ext4 for the container.
The next step would be to mount the container and fill it with data (2). For this, the user has to type in his password or use his keyfile to decrypt the container. The TrueCrypt device driver masquerades the complete encryption/decryption process and the user will only see an extra disc on his system.
The user can use this disc like any other drive on his system to open or save data on it. The files get de-/encrypted on the fly (3).

At last the container gets unmounted from the system (4). The user can now save the container to a memory stick or any other portable device. If the device gets lost or is stolen the documents in the container stay encrypted and hidden. Thus they cannot be used or revealed.
To use an already encrypted container its only necessary to redo the steps 2 through 4.
Integration into the OpenSecurity layer
In the OpenSecurity system this steps are nearly the same, but get executed automatically by a virtual machine. The only needed user interactions would be to select the data and provide the password or keyfile for de-/encryption.

Problems in this solution
As mentioned above in 4.6 all files that get imported must be checked if they are encrypted. If a file is encrypted it has to go through the decryption workflow and after that the encrypted data has to be scanned for maleware.

Because of the nature of encryption, encrypted files look like absolute random data. It is very hard to recognize if a file is encrypted or if the file is only filled with random bytes. It's only possible to test with a heuristic method if the file has a high probability to be an encrypted file or container.

One of the ways to solve this issue is a whitelist. Only definitely known files – like text documents or images – can pass the whitelist. Encrypted files will be checked for predefined headers by a heuristic method like mentioned above. If they pass the whitelist filter the decryption routines can handle them
 else some extra actions have to be done.
All other files are not imported at all or are quarantined and have to be checked by a supervisor.
The drawback of this solution is, that a higher instance with some technical know how is needed that can decide if a quarantined file is not harmful. Also an administration interface should be implemented to handle such events in an easy way.
5 References
6 Annexes

6.1.1 Encryption and Decryption

The following provides the necessary steps for creating and mounting an encrypted file container in terms of a example based on truecrypt.

1.a
Create a container with password:

truecrypt -c "containername" --password="password" --volume-type=normal --filesystem=none --encryption=aes --size="size" --hash=SHA-512 --random-source=/dev/urandom -k "" --non-interactive

If the user should type in the password a user interaction is necessary. The creation process can take a long time. The bigger the container should be, the more time is needed for the process to create it.
1.b
Create a container with an key-file:

truecrypt -c "containername" --volume-type=normal --filesystem=none --encryption=aes --size="size" --hash=SHA-512 --random-source=/dev/urandom -k "keyfile" --non-interactive

If the key-file is protected with an passphrase a user interaction is necessary.
2.a
Decrypt the container with an password:

truecrypt "containername" --password="password" --filesystem=none -k "" --protect-hidden=no --non-interactive

If the user should type in the password a user interaction is necessary.
2.b
Container entschlüsseln mit keyfile:

truecrypt "containername" --filesystem=none -k "keyfile" --protect-hidden=no --non-interactive

If the key-file is protected with an passphrase a user interaction is necessary.

3
Find the decrypted container.:

truecrypt –l

1: /path/containername /dev/mapper/truecrypt1

4
Create a filesystem in the container:

mkfs.ntfs /dev/mapper/truecrypt1

5
Mount the container:

mount /dev/mapper/truecrypt1 /mountpoint

6
Copy files into the container:

cp/rsync/mv/scp /source /mountpoint

7
Unmount the container:

umount /mountpoint

truecrypt -d "containername"

8
Open an existing container:

See points “2.a/b”, “6” and “7”.
�Figure?

�Maybe reorganize steps (points with subpoints?) to have a denser view at this workflow. Maybe also provide a sort of sequence diagram to show chronology and interacting „components“ (user, opensec client, security vm,...).

�Antwort auf Wolfgang Eibner (05.06.2013, 16:36): "..."

Added Graphics

�Should we name it „Security VM/server“? I think we talked about that because it does both, virus scanning and encryption.

�In case of successful encryption: Is there any interaction with the user necessary. We already got the keyfile/password in step 7.

�Same as above...

�Antwort auf Wolfgang Eibner (05.06.2013, 16:47): "..."

Added Graphics

�Swap 6 and 7?

�Which storage? A storage in the safe LAN, the users vm or does the user just simply get access to the data on the external storage (usb stick)

�Antwort auf Wolfgang Eibner (05.06.2013, 16:51): "..."

Would say on the local lan storage (samba, ...)

�Scanning the “whole” machine is already one of our proposed solutions. We also talked about having a safe OS and a unsafe OS on the machine. Should we mention that?

�Also mention malware/virus compromising and thus the requirement to separate internet access from safe LAN/office vm.

�I think we could already extract some more requirements from the „Architecture discussion paper“ of the last consortium meeting.

�I think it would be better to include numbers in the figure and the different steps in the text should refer them.

�Export could also occur with a different key/encryption alg. as import. Maybe we should mention that here.

�Numbers for steps like mentioned at above figure.

�Not clear, that the SecurityVM resides also at the client.

�Last sentence/paragraph says NFS (running App VMs), this one states scanning of image files (App VM not running)!?

�Central?

�And the PersonalVM get new IP adresses at the safe LAN

�No figure

�Just a copy of the initial text of this document? Wrong paragraph, recurrence from above and not part of „Safe Internet Access“

�IKARUS

�Above we also have the SecurityVM which is (part of) the SES. I think we should describe this better and use a coherent wording.

�Should there be a figure?

�

�I think that a local scanning based on DVM's is also scalable and releases the resources after usage.

�Locally also possible through autoupdate mechanisms

�Most update mechanisms rely on a central source. A local update would fetch resources from a central repository

�

�Redesign. Table looks like supported /not supported which is not necessarily true. Describe in terms of more or less suitable.

�At this time a cannot see the icons here – but I already had it in another version.

�X-Net

Suggestion: Enumerate existing tools (evtl. algorithms) used by the IKT and BM

�Should we use SAFE LAN as wording here?

�Same here (SAFE LAN)?

�Insert step 3 from below and rename existing step 3 to 4.�Also make documents (!) a two way direction.

�Please extend description how encryption is interacting with SES/SecurityVM

Also: do we allow other encryption methods than true crypt? Modular approach?

�Maybe mention user interactio n here for decryption and then import of data like normal files.

